طراحي سيستم خبره فازی براي انتخاب پیمانکار مناسب در برونسپاري فناوري اطلاعات
محورهای موضوعی :ناديا کلانتري 1 , نادیا کلانتری 2 , علیرضا حسن زاده 3 , شعبان الهی 4
1 - دانشگاه تربيت مدرس
2 - دانشگاه تهران
3 - دانشگاه تهران
4 - دانشگاه تربیت مدرس
کلید واژه: برونسپاري درون مرزي, پیمانکار, معيار, سيستم خبره فازي, فناوری اطلاعات,
چکیده مقاله :
افزايش پيچيدگي و هزينه سيستمهاي فناورياطلاعات مشكلات زیادی براي شركتها در زمينه زيرساخت و نيروي انساني ايجاد نموده كه با استفاده از برونسپاري اين موارد كاهش يافته است. همه سازمان ها سعی دارند از راه هاي مختلف احتمال موفقيت پروژه هاي برونسپاري خود را افزايش دهند. يکي از دلايل شکست اين پروژه ها خصوصا در زمينه فناوري اطلاعات به دليل نقش مهم آن درکسب مزیت رقابتي انتخاب پیمانکار نامناسب ميباشد که این انتخاب به دليل وجود معيارهاي متعدد و متناقض پيچيده است. هدف اين پژوهش يافتن معيارهاي مهم جهت انتخاب پیمانکار و ارائه چارچوب آن و مشخص نمودن اهميت معیارها و در نهايت طراحي سيستم خبره فازي انتخاب پیمانکار مناسب در برونسپاري درون مرزي فناوري اطلاعات ميباشد. روش اخذ دانش از خبرگان که شامل متخصصان و مدیران فناوری-اطلاعات می باشند پرسشنامه است و جهت اعتبارسنجي سيستم به استفاده از آن در یک شرکت فناوری اطلاعات پرداخته شده است و نتايج حاصل حاکي از عملکرد مطلوب سيستم ميباشد.
The increase in the complexity and cost of information technology systems has created many problems for companies in the field of infrastructure and manpower, which have been reduced by using outsourcing. All organizations try to increase the probability of success of their outsourcing projects in different ways. One of the reasons for the failure of these projects, especially in the field of information technology, due to its important role in gaining a competitive advantage, is the selection of an inappropriate contractor, which is complicated due to the existence of multiple and contradictory criteria. The purpose of this research is to find the important criteria for selecting the contractor and provide its framework and specify the importance of the criteria and finally to design a fuzzy expert system for choosing the right contractor in intra-border outsourcing of information technology. The method of obtaining knowledge from experts, which includes information technology specialists and managers, is a questionnaire, and it has been used in an information technology company to validate the system, and the results indicate the optimal performance of the system.
1.Webster, S. (2004). Offshore. CFO , 45-76.
2.Metters, R. (2007). A typology of offshore and outsourcing in electronically transmitted services. Operations & Management, 26 , 198-211.
3.Barthelemy, J. (2003). The seven deadly sins of outsourcing. Academy of Management Executive 17(2) , 87-100.
4.Wadhawa, V., & Ravindran, A. (2007). Vendor selection outsourcing. Computers & Operations Research, 43 , 3725-3737.
5.McCarthy, I., & Anagroustou, A. (2004). The impact of outsourcing on the transaction costs and boundaries of manufacturing. Internal Journal of Production Economics, 88(1) , 61-71.
6.Atesci, K., Bhagwatwar, A., Deo, T., Desouza, K., & Baloh, P. (2010). Business process outsourcing: A case study of Satyam Computers. International Journal of Information Management, 30 , 277-282.
7.Kahraman, C., Engin, O., Kabak, O., & Kaya, I. (2008). Information systems outsourcing decisions using a group decision-making approach. Engineering Application of Artifitial Intelligence 22 , 832-841.
8.Khalfan, A., & Gough, T. (2000). IS/IT Outsourcing Practices in the Public Sector: A Case Study of a Developing Country. Mexico: Business Information Technology Management:Leveraging International Opportunities.
9.Schniederjans, M. (2007). Preface focused issue on operations research and outsourcing. Computer & Operations Research, 34 .
10.Smith, A., Mitra, S., & Narasimhan, S. (1998). Information systems outsourcing: A study of pre event firm characteristics. Journal of Management Information Systems, 15(2) , 33-61.
11.Clott, C. (2004). Perspectives on global outsourcing and the changing nature of work. Business and Society Review, 109(2) , 153-170.
12.Klepper, R., & Wendell, J. (1999). Outsourcing information technology systems and services. Retrieved from Business orum: WWW.businessforum.com
13.Bryson, K., & Ngwenyama, O. (2006). Managing risks in information systems outsourcing: An approach to analyzing outsourcing risks and structuring incentive contracts. Operational Research, 174 , 245-264.
14.Claver, E., Reyes, G., Jose, G., & Juan, L. (2002). Information systems outsourcing: Reasons, reservations and success factors. Logistica Information Management, 15(4) , 294-308.
15.Lacity, M., & Hirshheim, R. (2000). The myth and realities of information technology insourcing. Communications of the ACM, 43(2) , 99-107.
16.Gonzalez, R., Gasco, J., & Liopis, J. (2006). Information systems outsourcing: A literature analysis. Information & Management, 43 , 821-834.
17.Wright, S., & Boschee, K. (2004). The offshore It provider is under fire- will the US company be next? Employee Relations Law Journal, 30(1) , 60.
18.Laudon, K., & Laudon, J. (2005). Essentials of management information systems managing the digital firm(6 th ed.). NJ: Pearson Education.
19.Banaitiene, N., & Banaitis, A. (2006). Analysis of criteria for contractor's qualification evaluation. Technological and Economic Development of Economy,12(4) , 276-282.
20.Hsu, P., & Hsu, M. (2006). Optimizing the information outsourcing practices of primary care medical organizations using entropy and TOPSIS. Quality and Quantity, On line first.
21.Wang, J.-J., & Yang, D.-L. (2007). Using a hybrid multi-criteria decision aid method for information. Computers & Operations Research 34 , 3691-3700.
22.Yang, C., & Huang, J.-B. (2000). A Decision Model for IS Outsourcing. International Journal of Information Management 20 , 225-239.
23.Lacity, M. C., Khan, S. A., & Willcoks, L. P. (2009). A review of the IT outsourcing literature: Insights for practice. Journal of Strategic Information Systems 18 , 130-146.
24.Araz, C., Ozfirat, P., & Ozkarahan, I. (2007). An integrated multi criteria decision-making methodology for outsourcing management. Computers & Operation Research 34 , 3738-3756.
25.Ha, S. H., & Krishnan, R. (2008). A hybrid approach to supplier selection for the maintenance. Expert Systems with Applications 34 , 1303-1311.
26.Liou, J., & Chuang, Y. (2010). Developing a hybrid multi-criteria model for selection of outsourcing providers. Expert systems with applications, 37 , 3755-3761.
27.Jaskowski, P., Biruk, S., & Bucon, R. (2010). Assessing contractor selection criteria weights with fuzzy AHP method application in group decision environment. Automation in Construction, 19 , 120-126.
28.Hassanzadeh Amin, S., & Razmi, J. (2009). An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation. Expert System with Application, 36 , 8639-8648.
29.Chen, L., & Wang, T.C(2009).Optimizing partners’choice in IS/IT outsourcing projects: Production Economics120 , 233-424.
30.Isiklar, G., Alptekin, E., & Buyuyozkan, G. (2007). Application of a hybrid intelligent decision support model in logistic outsourcing. Computers & Operation Research 34 , 3701-3714.
31.Montazer, G., Qahri Saremi, H., & Ramezani, M. (2009). Design a new mixed expert decision aiding system using fuzzy ELECTRE III method for vendor selection. Expert System with Applications 36 , 10837-10847.
32.Faeza, F., Ghodsypour, S., & O’Brien, C. (2007). Vendor selection and order allocation using an integrated fuzzy. Int. J. Production Economics.
33.Shyur, H., & Shih, H. (2006). A hybrid MCDM model for strategic vendor selection. Mathematical and Computer Modelling 44 , 749-761.
34.Büyüközkan, G., & Feyzioğlu, O. (2006). An intelligent decision support system for IT outsourcing. FSKD, LNAI 4223 , 1303-1312.
35.Parry, B. (1997). IS Outsourcing. Kuwait: Unpublished notes on IS outsourcing, BP Consultancy Company.
36.Watt, D., Kayis, B., & Willey, K. (2010). The relative importance of tender evaluation and contractor selection criteria. International Journal of Project Management, 28 , 51-60.
37.Hafeez, K., Malak, N., & Zhang, Y. (2007). Outsourcing non-core assets and competences of a firm using analytic hierarchy process. Computers and Operations Research 34 , 3592-3608.
38.Ghodsipour, S., & O'Brien. (1998). A decision support system for supplier selection using an integrated analytic hierachy process and linear programming. Int. J. Production Economics 56-57 , 199-212.
39.Gustin, C., Daugherty, P., & Ellinger, A. (1997). Supplier selection decisions in systems/ software purchases. International Journal of Purchasing Material Management , 1-46.
40.Paisittanand, S., & Olson, D. (2006).A simulation study of IT outsourcing in the credit card business.European Journal of Operational Research, Article in Press, Available through(www.sciencedirect.com).
41.Kuang, C. (2006). Using fuzzy sets and grey decision-making to construct the performance evaluation model of firm’s outsourcing management:a case study of avionics manufacturer in Taiwan. Quality and Quantity 40,577-593.
42.Yang, D., Kim, S., Nam, C., & Min, J. (2007). Developing a decision model for business process outsourcing. Computers and operations research, 34(12) , 3769-3778.
43.Tam, M. C., & Tummala, R. V. (2001). An application of the AHP in vendor selection of a telecommunication system. Omega 29 , 171-182.
44.Carr, A., & Pearson, J. (2002). The impact of purchasing and supplier involvement on strategic purchasing and its impact on firm’s performance. Operations and Production Management 22(9) , 1032-1055.
45.Lie, J., Ding, F., & Lall, V. (2000). Using data envelopment analysis to compare suppliers for supplier selection and performance improvement. Supply Chain Management:an International Journal 5(3) , 143-150.
46.Yasamis, F., Arditi, D., & Mohammadi, J. (2002). Assessing contractor quality performance. Construction Management and Economics, 20 , 211-223.
47.Vokurka, R., Choobineh, J., & Vadi, L. (1996). A prototype expert system for the evaluation and selection of potential suppliers. International Journal of Operations & Production Management, 16(12) , 106-127.
48.Choy, K., Lee, W., & Lo, V. (2002). An intelligent supplier management tool for benchmarking suppliers in outsource manufacturing. Expert Systems with Applications 22 , 213-224.
49.Choy, K., Lee, W., Henry, C., & Choy, L. (2005). A knowledge-based supplier intelligence retrieval system for outsource manufacturing. Knowledge-Based Systems, 18 , 1-17.
50.Metaxiotis, K., Psarras, J., & Askounis, D. (2002). GENESYS: An expert system for production scheduling. Industrial Management and Data Systems 2 , 309-317.
51.Feigenbaum, E. (1982). Handbook of artificial intelligence. Heuris Tech Press/ William Kaufman.
52.Giarratano, J. (1998). expert systems principles and programming. third edition: PWS publishing company.
53.Wang. (1994). A course in fuzzy systems and control. Prentice-Hall.
54.Matthews, C. (2003). A formal specification for a fuzzy expert system. Information and Software Technology 45 , 419-429.
55.Rogers, E., & Li, Y. (1993). Parallel processing in a control systems environment. London: Prentice Hall