ارائه روشی مناسب برای دسته¬بندی نامه¬های الکترونیکی تبلیغاتی بر مبنای پروفایل کاربران
محورهای موضوعی : عمومیمحمد فتحیان 1 , رحیم حضرتقلی زاده 2
1 - استاد علم و صنعت ایران
2 - دانشجو
کلید واژه: تجارت¬الکترونیکی, تبلیغات الکترونیکی, دسته¬بندی هرزنامه¬ها, داده¬کاوی, پروفایل,
چکیده مقاله :
به طور کلی، تعریف هرزنامه در ارتباط با رضايت يا عدم رضايت گیرنده است نه محتوای نامه الکترونیکی. بر طبق این تعريف، مشکلاتي در دسته بندی نامه های الکترونیکی در بازاریابی و تبلیغات مطرح مي شود. برای مثال امکان دارد بعضي از نامه هاي الکترونيکي تبلیغاتی، براي عده اي از کاربران هرزنامه و براي عده اي ديگر هرزنامه نباشد. براي مقابله با اين مشکل با توجه به پروفایل و رفتار کاربران، ضد هرزنامه هاي شخصي طراحی مي شود. به طور عادي براي دسته بندی هرزنامهها، روشهاي يادگيري ماشيني با دقت خوب به کار می رود. اما در هر حال يک روش منحصر به فرد موفق بر مبنای دیدگاه تجارت الکترونیک وجود ندارد. در این مقاله ابتدا پروفایل جدیدی برای شبیه سازی بهتر رفتار کاربران، تهیه می شود .سپس این پروفایل همراه با نامه های الکترونیکی به دانشجویان ارائه شده و پاسخ آنها جمع آوری می گردد. در ادامه برای دسته بندی نامه های الکترونیکی، روشهای مشهور به ازای مجموعه داده های مختلف آزمایش می شود .سرانجام، با مقایسه معیارهای ارزیابی داده کاوی، شبکه عصبی به عنوان بهترین روش با دقت بالا، تعیین می گردد.
In general, the definition of spam is related to the consent or lack of consent of the recipient, not the content of the e-mail. According to this definition, problems arise in the classification of electronic mails in marketing and advertising. For example, it is possible that some promotional e-mails are spam for some users and not spam for others. To deal with this problem, personal anti-spams are designed according to the profile and behavior of users. Usually, machine learning methods are used with good accuracy to classify spam. But in any case, there is no single successful method based on the point of view of e-commerce. In this article, first, a new profile is prepared to better simulate the behavior of users. Then this profile is presented to students along with emails and their responses are collected. In the following, well-known methods are tested for different data sets to categorize electronic mails. Finally, by comparing data mining evaluation criteria, neural network is determined as the best method with high accuracy.
