کاربرد روش هاي خوشه سازي (MRGC, AHC, DC, SOM) درتعيين تراوايي سنگ مخزن کربناته، سازند ايلام در جنوب غرب ايران
محورهای موضوعی :سید علی معلمی 1 , فرهاد خوشبخت 2 , سکینه نقدی 3
1 - پژوهشکده ازدیاد برداشت از مخازن نفت و گاز
2 - شرکت ملی نفت ایران
3 - دانشگاه خوارزمی
کلید واژه: خوشه سازي تراوايي سازند ايلام نمودار هاي چاه پيمايي ,
چکیده مقاله :
تراوايي يکي از پارامترهاي مخزني مهم است که در محاسبات و مدلسازيهاي مخزن نقش موثري ايفا ميکند. روش مستقيم اندازه گيري آن از طريق مغزه هاي گرفته شده از لايه هاي مخزني حاصل مي شود. ولي با توجه به محدود بودن مقدار مغزه هاي گرفته شده در يک ميدان و همچنين هزينه هاي زياد روش هاي آزمايشگاهي؛ استفاده از روش هاي غيرمستقيم در چاه هاي فاقد مغزه به منظور تعيين مقدار تراوايي ارزش به سزايي دارد. در اين پژوهش با استفاده از روش هاي خوشه سازي با كمك لاگ هاي پتروفيزيكي مقدار تراوايي اندازه گيري و مورد تجزيه و تحليل قرار گرفته است. بدين منظور لاگ هاي پتروفيزيكي سازند ايلام از8 حلقه چاه انتخاب و علاوه بر آن از داده هاي تراوايي اندازه گيري شده آزمايشگاهي 3 حلقه براي مقايسه نتايج مورد استفاده قرار گرفته است. لاگ تراوايي ابتدا با استفاده از پارامتر تخلخل موثر در چاه A که داراي داده هاي تراوايي مغزه بود، تخمين زده شد و پس از بررسي ميزان دقت تخمين، محاسبات در ساير چاه هاي مورد مطالعه نيز صورت گرفت. در گام بعدي، با استفاده از روش هاي خوشه بندي، تراوايي تخمين زده شد. سپس نتايج بدست آمده با داده هاي آزمايشگاهي و تعيين ضريب همبستگي، بهترين روش معرفي شده است. بدين ترتيب با مقايسه 4 روش خوشه سازي SOM, MRGC, AHC & DC روش MRGC با ضريب همبستگي0.91پاسخ مناسبي نسبت به بقيه روش ها ارايه داده است.
The permeability of reservoir parameters is important in the calculation and modeling reservoir plays a role. Measured directly via cores taken from the reservoir layer can be achieved. But due to the limited amount of core taken in a field and laboratory methods as well as high cost; use indirect methods to determine the wells without core permeability is great value. In this study, using clustering methods using petrophysical logs permeability values were measured and analyzed. For this purpose, petrophysical logs Ilam Formation selection of 8 wells and addition of data measured in vitro permeability 3-ring is used to compare the results. Log permeability effective porosity in the well using the parameters A with the core permeability data, estimates and then check the accuracy of estimates, calculations also took place in other fields of study. In the next step, using clustering method, was estimated permeability. Then the results with experimental data and correlation coefficient, the best method is introduced.
[1] آقا نباتي، ع، 1383، زمين شناسي ايران:.انشارات سازمان زمين شناسي کشور، 391صفحه.#
[2]آغاجريان، م.، کمالي، م. ر.، کدخدايي، علي.، 1391، تخمين تراوايي و تخلخل مؤثر و تعيين واحدهاي جريان هيدروليكي با استفاده از شبكه ي عصبي مصنوعي در ميدان نفتي مارون . فصلنامه زمين شناسي کاربردي .شماره 3 . 203-193صفحه . #
[3] ا غار, م.، کدخدايي، ع.، عزيز زاده، م.، نبي بيد هندي، م.، 1392، تخمين تخلخل مؤثر و تراوايي به روش منطق فازي در مخزن آسماري، يكي از ميادين نفتي خليج فارس. اولين كنفرانس و نمايشگاه تخصصي نفت، پژوهشگاه صنعت نفت، تهران، ايران. 86-79صفحه .#
[4] رستگارنيا، م.، روشندل كاهو، ا.، كدخدايي، ع.، لشكري، م.، فرامرزي، ع.، 1391، تعيين رخساره هاي تراوا با به كارگيري روش هاي خوشه بندي چند تفكيكي بر پايه گراف و ماشين بردار پشتيبان. مقالههاي همايشهاي ايران . نخستين همايش ملي مهندسي مخازن هيدروکربوري، علوم و صنايع وابسته . 11-14 صفحه .#
[5] رضايي، م .ر،. و چهرازي، ع.، 1389، اصول برداشت و تفسير نگارهاي چاه پيمايي ، انتشارات دانشگاه تهران، چاپ دوم 569صفحه.#
[6]عادل زاده، م. ر.، 1387، خواص سنگ هاي مخازن نفت وگاز، انتشارات راه نوين ، جلد اول259 صفحه .#
[7]کدخدايي، ع. کمالي، م. ر.، آقاجري، ن.، 1393، تخمين تراوايي مخزن کنگان واقع در ميدان گازي کيش با استفاده از داده هاي پتروفيزيکي. . سومين همايش ملي مخازن هيدروکربني و صنايع بالادستي، تهران، ايران11 صفحه. #
[8] کيهاني، ح. ر.، رياحي، م. ع.، نوروزي، غ. م.، 1393، تخمين تراوايي با استفاده از الکتروفاسيس ها دريکي از مخازن کربناته ميادين جنوب غرب ايران .پژوهش نفت شماره 80 . 40-28 صفحه .#
[9] مطيعي، ه.، 1372، زمين شناسي ايران، چينه شناسي زاگرس، چاپ اول، انتشارات سازمان زمين شناسي 192صفحه . #
[10] ALIZADEH, B., NAJJAN, S., and KADKHhODEI, A., 2012, Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran: Journal of Elsevier Computers & Geosciences, 45, 261–269.#
[11] ANTEL, O. R., and AGUIRRE, O., 2001, Permeability calculations from clustering electrofacies technique for the petrophysical evaluation in LaPena and Tundy oil fields: SPE No. 69400-MS.#
[12] BALDWIN, J., 1991, Using Simulated Bidirectional Associative Neural Network Memory with Incomplete Prototype Memories to identifye Facies from Intermittent Logging Data Acquried inSiliciclastic Depositional Sequence: Paper presented at the 1991 Annual Technical Conference and Exhibition, October6-9,, Dalas, Texas.#
[13] CUDDY, S. J., 2000, Litho-Facies and Permeability Prediction from Electrical Logs Using Fuzzy Logic: SPE Paper No. 65411.#
[14].KHOSHBAKHT F. M., MOHAMMADNIA, A. M., BAGHERI, A. A., RAHIMI B., and Beiraghdar, Y., 2010, Evaluatiy different approaches of permeability modeking in heterogeneous carbonate reservoirs (an example from fahliyan formation in SW of Iran): 72nd EAGE Conference & Exhibition incorporating SPE EUROPEC 2010 Barcelona, Spain, 14– 17.#
[15] GHIASI-FRIZ, J., KADKHhODEI, A., and ZIAII, M., 2012, The application of committee Machine with Intelligent Systems to the prediction of permeability from petrographic image analysis and well logs data: a case study from the South Pars gas field, South Iran: Petroleum Science and Technology Journal, Philadelphia, Taylor & Frsncis Group, 30, 2122-2136.#
[16] LUKASOVA, A., 1979, Hierarchical Agglomerative Clustering Procedure: Pattern Recognition, 1,365-381.#
[17] KOHONENT, T., 2001, Self-Organizing Maps. Third, extended edition: Springer, 501.#
[18] KUMAR, B., KISHOER, M., 2006, Electrofacies Classification – A Critical Approach: 6th International Conference & Exposition on Petroleum Geophysics, New Delhi, India, 822-825.#
[19] RABILLER, PH., and YE, S. J., 2000, A New Tools for Electrofacies Analysis: Multi Resolution Graph-BasedClustering: PWLA 41nd Annual Logging Symposium Transaction, June 4-7.#
[20] SERRA, O., 1986, Fundamentals of well log interpretation: The interpretation of logging data, Amesterdam, Elsevier, 12, 684.#
[21] SFIDARI, E., KADKHHODEI-ILKHCHI, A., and NAJJARI, S., 2012, Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems: Journal of petroleum science and Engineering 86-87, 190-205.#
[22] TRAUTH, M. H., 2007, MATLAB Recipes for Earth Sciences: University of Potsdam, Germany, 288#