اندازهگیری و مدلسازی اغتشاشات چرخ عکسالعملی ماهواره با استفاده از سنسور شتاب و نیرو
محورهای موضوعی : مهندسی برق و کامپیوترآرمان صحت نیا 1 , فرزاد هاشمزاده 2 , حمید قوچی اسکندر 3
1 - دانشگاه تبریز،دانشكده مهندسي برق و كامپيوتر
2 - دانشگاه تبریز،دانشكده مهندسي برق و كامپيوتر
3 - دانشگاه آزاد اسلامی واحد تبریز،دانشكده فنی و مهندسي
کلید واژه: چرخ عکسالعملی, رؤیتگر, نامساویهای ماتریسی, ورودی نامعین,
چکیده مقاله :
چرخ عکسالعملی، یکی از حساسترین ادوات مربوط به رانشگرهای فضایی است که به راحتی دستخوش اغتشاشات میشود. حفظ وضعیت ماهواره و توانایی در کنترل آن به دلیل پرهزینه بودن پروژههای طراحی و ساخت، یکی از مهمترین مسایل مطرحشده این روزها میباشد. برای بهبود این روند، شناسایی و مدلکردن اغتشاشات و تحلیل تأثیرات آن بر پارامترهای سیستم جهت شناسایی و نقطهیابی نقص، از اهمیت بسیاری برخوردار هستند. در نتیجه شناسایی و تخمین دقيق اغتشاشات واردشده بر چرخهاي عكسالعملي و بررسی تأثیر این ورودیهای نامعین بر متغیرهای حالت سیستم، امری ضرروی برای آشکارشدن وضعیت داخلی فضاپیما و شناسایی نقص آن است. به همین سبب در این مقاله از یک رؤیتگر جدید جهت تخمین بردار ورودی نامعین اغتشاش و بردار حالت سیستم استفاده شده است. در این راستا با در نظر گرفتن دینامیک میکرواغتشاش متغیر با زمان آنبالانس چرخ، ماتریسهای طراحی رؤیتگر پیشنهادی در هر لحظه از زمان را با انجام یک سری محاسبات نامساویهای ماتریسی (LMI) به دست میآوریم که همگرایی و پایداری خطای تخمین این روش بر اساس قضیه لیاپانوف اثبات گردیده است. سپس نتایج طی یک سری شبیهسازی در نرمافزار Matlab با مشخصه تخمین ورودی بردار نامعین و بردار حالت مدل میکرواغتشاش، در بخش چهار ارائه میشوند.
The reaction wheel is one of the most sensitive devices used in spacecraft, which is easily disturbed. Nowadays, maintaining the status of the satellite and the ability to control it, is one of the most important issues due to the costly design and construction of such projects. To improve this process, identifying and modeling perturbations and analyzing their effects on system parameters to spot the defects, are very important. As a result, accurate identification and estimation of perturbations on reaction wheels through studying the effect of input uncertainty on the system state variables is necessary to reveal the internal condition of the spacecraft and identify its defects. For this reason, in this paper, a new observer is designed to estimate the uncertain perturbation and the system state vector. In this regard, by considering the dynamics of variable micro-turbulence with wheel imbalance time, we obtain the proposed observer’s design matrices at any time by performing a series of linear matrix inequality (LMI) calculations that converge and stabilize the estimation error based on Lyapuanv theorem. Then, the results are presented in a series of simulations in MATLAB software included the characteristic of estimated uncertain inputs and state vector of micro-turbulence model, in section four.
[1] H. S. Oh and D. I. Cheon, "Precision measurements of reaction wheel disturbances with frequency compensation process," J. of Mechanical Science and Technology, vol. 19, no. 1, p.136.J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd Ed., vol. 2, Oxford: Clarendon, 1892, pp. 68-73, Jun. 2005.
[2] ع. آقالاري و م. ايرانزاد، "مدل سازی کامل اغتشاشات چرخ عکس العملی و پیاده سازی روی یک نمونه آزمایشگاهی،" فصلنامه علوم و فناوری فضایی، دوره 6، شماره 1، صص. 91-77، بهار 1392.
[3] B. J. Margolies, Systematic Evaluation and Analysis System for Yield Control in Large Cheese Factories, MS Thesis, 2017.
[4] A. Baimyshev, A. Zhakatayev, and H. A. Varol, "Augmenting variable stiffness actuation using reaction wheels," IEEE Access, vol. 4, pp. 4618-4628, 2016.
[5] K. C. Liu, P. Maghami, and C. Blaurock, "Reaction wheel disturbance modeling, jitter analysis, and validation tests for solar dynamics observatory," in Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, 18 pp., Honolulu, HI, USA, Aug. 2008.
[6] B. Xiao, Q. Hu, W. Singhose, and X. Huo, "Reaction wheel fault compensation and disturbance rejection for spacecraft attitude tracking," J. of Guidance, Control, and Dynamics, vol. 36, no. 6, pp. 1565-1575, Nov. 2013.
[7] H. Yadegari, H. Chao, and Z. Yukai, "Finite time sliding mode controller for a rigid satellite in presence of actuator failure," in Proc. IEEE 3rd Int. Conf. on Information Science and Control Engineering, pp. 1327-1331, Beijing, China, 8-10 Jul. 2016.
[8] O. D. Montoya and W. Gil-Gonzalez, "Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach," J. of Engineering Science and Technology, vol. 23, no. 1, pp. 21-29, Feb. 2020.
[9] P. Zhang, Z. Wu, H. Dong, M. Tan, and J. Yu, "Reaction-wheel-based roll stabilization for a robotic fish using neural network sliding mode control," J. of IEEE/ASME Trans. on Mechatronics, vol. 25, no. 4, pp. 1904-1911, Aug. 2020.
[10] H. Alkomy and J. Shan, "Modeling and validation of reaction wheel micro-vibrations considering imbalances and bearing disturbances," J. of Sound and Vibration, vol. 492, Article ID: 115766, 3 Feb. 2021.
[11] K. Ataalp and M. Gurtan, "System level analysis of reaction wheel micro-vibrations," in Proc. IEEE 9th Int. Conf. on Recent Advances in Space Technologies, pp. 301-306, Istanbul, Turkey, 11-14 Jun. 2019.
[12] J. Alcorn, C. Allard, and H. Schaub, "Fully coupled reaction wheel static and dynamic imbalance for spacecraft jitter modeling," J. of Guidance, Control, and Dynamics, vol. 41, no. 6, pp. 1380-1388, Jun. 2018.
[13] J. Kampmeier, R. Larsen, L. F. Migliorini, and K. A. Larson, "Reaction wheel performance characterization using the kepler spacecraft as a case study," in Proc. SpaceOps Conf., 18 pp., Marseille, France, 28 May-1 Jun. 2018.
[14] G. Belascuen and N. Aguilar, "Design, modeling and control of a reaction wheel balanced inverted pendulum," in Proc. IEEE Biennial Congress of Argentina, 9 pp., an Miguel de Tucuman, Argentina, 6-8 Jun. 2018.
[15] J. T. King, "Increasing agility in orthogonal reaction wheel attitude control systems," Acta Astronautica, vol. 177, pp. 673-683, Dec. 2020.
[16] G. P. Neves, B. A. Angelico, and C. M. Agulhari, "Robust ℋ2 controller with parametric uncertainties applied to a reaction wheel unicycle," International J. of Control, vol. 93, no. 10, pp. 2431-2441, 2020.
[17] R. A. Masterson, D. W. Miller, and R. L. Grogan, "Development and validation of reaction wheel disturbance models: empirical model," J. of Sound Vibration, vol. 249, no. 3, pp. 575-598, Jan. 2002.
[18] Z. Zhang, G. S. Aglietti, and W. J. Ren, "Microvibration model development and validation of a cantilevered reaction wheel assembly," J. of Vibration, Structural Engineering and Measurement II, Applied Mechanics and Materials, Trans. Tech Publications, vol. 226, pp. 133-137, Nov. 2012.
[19] M. P. Le, Micro-Disturbances in Reaction Wheels, Ph.D. Dissertation. Eindhoven, Technische Universiteit Eindhoven, 2017.
[20] D. K. Kim, "Micro-vibration model and parameter estimation method of a reaction wheel assembly," J. of Sound and Vibration, vol. 333, no. 18, pp. 4214-4231, 1 Sept. 2014.
[21] H. Septanto, F. Kurniawan, B. Setiadi, E. Kurniawan, and D. Suprijanto, "Disturbance observer-based attitude control of the air-bearing platform using a reaction wheel," in Proc. IEEE Int. Conf. on Aerospace Electronics and Remote Sensing Technology, pp. 1-6, Nov. 2021.
[22] Y. Hu, Z. Lu, W. Liao, and X. Zhang, "Attitude control of the low earth orbit satellite with moving masses under strong aerodynamic disturbance," in Proc. IEEE 7th Int. Conf. on Mechanical Engineering and Automation Science, pp. 32-38, Seoul, South Korea, 28-30 Oct. 2021.
[23] X. Hou, J. Zhang, Y. Ji, W. Liu, and C. He, "Autonomous drift controller for distributed drive electric vehicle with input coupling and uncertain disturbance," J. of ISA Trans., vol. 120, pp. 1-17, Jan. 2021.
[24] Y. Si and M. A. Ayoubi, "Attitude tracking control of spacecraft with reaction wheel disturbances via takagi-sugeno fuzzy model," AIAA SCITECH Forum, pp. 1418-1419, San Diego, CA, USA & Virtual, 3-7 Jan. 2022.
[25] C. Aguiar, D. Leite, D. Pereira, G. Andonovski, and I. Skrjanc, "Nonlinear modeling and robust LMI fuzzy control of overhead crane systems," J. of the Franklin Institute, vol. 358, no. 2, pp. 1376-1402, Jan. 2021.
[26] M. Darouach, L. Boutat-Baddas, and M. Zerrougui, "H∞ observers design for a class of nonlinear singular systems," Automatica, vol. 47, no. 11, pp. 2517-2525, Nov. 2011.