مدلسازی کمپرسور 250-K با استفاده از روش سری موازی نارکس و فازی سلسلهمراتبی
محورهای موضوعی : مهندسی برق و کامپیوترعادل خسروی 1 , عباس چترایی 2 , غضنفر شاهقلیان 3 , سید محمد کارگر 4
1 - دانشگاه آزاد اسلامی واحد نجف آباد
2 - دانشگاه آزاد اسلامی واحد نجف آباد
3 - مهندسی برق
4 - دانشگاه آزاد اسلامی واحد نجف آباد
کلید واژه: شناسایی سیستمکمپرسورفازی سلسلهمراتبینارکسمدلسازی,
چکیده مقاله :
با توجه به افزایش روزافزون کاربرد کمپرسورها در صنعت، تعیین یک مدل ریاضی برای کمپرسور جهت طراحی سیستم کنترلی، تجزیه و تحلیل و شبیهسازی کامپیوتری آن بسیار مهم است. همچنین در سالهای اخیر مدلسازیهای هوشمند نظیر شبکه عصبی و فازی به علت عملکرد واقعبینانهتر این مدلها مورد توجه محققین قرار گرفته و از انواع آن برای مدلسازی استفاده شده است. روشهای هوشمند دارای قابلیت بالایی برای برقراری ارتباط بین دادههای ورودی و خروجی است. در این مقاله، مدلسازی کمپرسور 250 K- شرکت ذوبآهن اصفهان بر اساس مدلهای هوشمند شبکه عصبی فازی رگرسیون خودکار غیر خطی با ورودی خارجی (نارکس) و شبکه فازی سلسلهمراتبی ارائه شده است. جهت مدلسازی، سیستم مورد آزمایش قرار گرفته است و دادههای ورودی و خروجی کمپرسور با استفاده از سنسورهای موجود در کمپرسور و پردازش تصویر برای تبدیلکردن دادهها به داده مورد نیاز در مدلسازی استفاده میشوند. سپس الگوریتمهای نارکس و فازی سلسلهمراتبی مدل کمپرسور با استفاده از نرمافزار Matlab تعیین میشود. نتایج شبیهسازی ارائهشده از مدلسازی، برازش بهتری برای نارکس نسبت به فازی سلسلهمراتبی را نشان میدهد. از بین دو مدل ارائهشده در این مقاله مدل نارکس در بردار رگرسیون و خطای گوسی، پاسخ بهتری نسبت به شبکه فازی سلسلهمراتبی ارائه میکند.
Due to the increasing use of compressors in the industry, it is important to determine a mathematical model for the compressor to design a control system, analysis and simulation of the computer. Also, in recent years, smart modeling such as neural network and fuzzy network have been considered by researchers for their more realistic performance, and their types have been used for modeling. Smart methods have high capability to communicate between input and output data. In this paper, modeling of K-250 compressor at Isfahan smelter company based on smart models of fuzzy neural network is presented. The Nonlinear Auto Regressive With exogenous input (Narx) and hierarchical fuzzy network are presented. For modeling, the system has been tested and the input and output data of the compressor using compressor sensors and image processing are used to convert the data into the required data in the modeling, then the above algorithms of the compressor model will be achieved with the help of software, MATLAB. The results of modeling Which NARX performed better than hierarchical fuzzy. Among the two models presented in this paper, the NARX model shows a better response than the hierarchical fuzzy network in all cases and in all aspects of the performance criteria.
[1] G. Torrisi, S. Grammatico, A. Cortinovis, M. Mercangoz, M. Morari, and R. S. Smith, "Model predictive approaches for active surge control in centrifugal compressors," IEEE Trans. on Control Systems Technology, vol. 25, no. 6, pp. 1947-1960, Nov. 2017.
[2] F. Willems and B. Jager, "Modeling and control of compressor flow instabilities," IEEE Control Systems Magazine, vol. 19, no. 5, pp. 8-18, Oct. 1999.
[3] N. Fujisawa, T. Inui, and Y. Ota, "Evolution process of diffuser stall in a centrifugal compressor with vaned diffuser," J. of Turbomachinery, vol. 141, no. 4, pp. 1-10, Apr. 2019.
[4] T. Nehler, "Linking energy efficiency measures in industrial compressed air systems with non-energy benefits - a review," Renewable and Sustainable Energy Reviews, vol. 89, pp. 72-87, Jun. 2018.
[5] K. Srinivasan, "Identification of optimum inter-stage pressure for two-stage transcritical carbon dioxide refrigeration cycles," the J. of Supercritical Fluids, vol. 58, no. 1, pp. 26-30, Aug. 2011.
[6] G. Wang and X. Zhang, "Thermoeconomic optimization and comparison of the simple single-stage transcritical carbon dioxide vapor compression cycle with different subcooling methods for district heating and cooling," Energy Conversion and Management, vol. 185, no. 1, pp. 740-757, Apr. 2019.
[7] J. D. Lewins, "Optimizing an intercooled compressor for an ideal gas model," International J. of Mechanical Engineering Education, vol. 31, no. 1, pp. 190-200, Jul. 2003.
[8] ا. آقاداودی و غ. شاهقلیان، "شناسایی حلقه بسته سیستم احتراق با استفاده از سیستم استنباط فازی- عصبی تطبیقی بازگشتی و شبکه با ورودیهای برونزا،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 17، شماره 3، صص. 212-205، پاییز 1397.
[9] T. K. Ibrahim, M. M. Rahman, and A. N. A. Alla, "Study on the effective parameter of gas turbine model with intercooled compression process," International J. of Scientific Research and Essays, vol. 23, no. 1, pp. 3760-3770, Dec. 2010.
[10] ل. خلیلزاده گنجعلیخانی، ف. شیخالاسلام و ﻫ. مهدوینسب، "شناسایی سیستم غیر خطی چندمتغیره مولد بخار نیروگاه با به کار بردن شبکههای عصبی تأخیر زمانی ویولت،" نشریه روشهای هوشمند در صنعت برق، سال 3، شماره 12، صص. 73-67، زمستان 1391.
[11] G. Shahgholian and P. Shafaghi, "State space modeling and eigenvalue analysis of the permanent magnet DC motor drive system," in Proc. of the IEEE/ICECT, vol. 1, pp. 63-67, Kuala Lumpur, Malaysia, May 2010.
[12] G. Shahgholian, P. Shafaghi, M. Zinali, and S. Moalem, "State space analysis and control design of two-mass resonant system," in Proc. of the IEEE/ICCEE, vol. 1, pp. 668-672, Dubai, Dec. 2009.
[13] M. Rampazzo, D. Tognin, M. Pagan, L. Carniello, and A. Beghi, "Modelling simulation and real-time control of a laboratory tid generation system," Control Engineering, vol. 83, no. 1, pp. 165-175, Feb. 2019.
[14] K. Ludtke, "Aerodynamic tests on centrifugal process compressors the influence of the vaneless diffusor shape," J. of Engineering for Power, vol. 105, no. 4, pp. 902-909, Oct. 1983.
[15] س. م. ج. آل هاشر و م. تشنهلب، "پیادهسازی شبکههای عصبی راف با یادگیری احتمالاتی جهت شناسایی سیستمهای غیر خطی،" مجله کنترل، سال ۶، شماره 1، صص. 50-41، بهار 1391.
[16] ح. مرادی چشمهبیگی و ا. نوری، "کاهش ریپل گشتاور در موتورهای سوئیچ رلوکتانس با بهرهگیری از منطق فازی جهت کنترل دینامیکی پارامترهای تابع توزیع گشتاور در سرعتهای پایین،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 16، شماره 2، صص. 107-97، تابستان 1397.
[17] L. Magdalena, "Semantic interpretability in hierarchical fuzzy systems: creating semantically decouplable hierarchies," Information Sciences, vol. 496, no. 1, pp. 109-123, Sep. 2019.
[18] H. Asgari, X. Q. Chen, M. Morini, M. Pinelli, R. Sainudiin, P. Ruggero, and S. M. Venturini, "NARX models for simulation of the start-up operation of a single-shaft gas turbine," Applied Thermal Engineering, vol. 93, no. 1, pp. 368-376, Jan. 2016.
[19] J. Kerr-Wilson and W. Pedrycz, "Generating a hierarchical fuzzy rule-based model," Fuzzy Sets and Systems, vol. 381, no. 1, pp. 124-139, Feb. 2020.
[20] D. Dovzan and I. Skrjanc, "Fuzzy space partitioning based on hyperplanes defined by eigenvectors for takagi-sugeno fuzzy model identification," IEEE Trans. on Industrial Electronics, vol. 67, no. 6, pp. 5144-5153, Jun. 2020.
[21] E. Aghadavoodi and G. Shahgholian, "A new practical feed-forward cascade analyze for close loop identification of combustion control loop system through RANFIS and NARX," Applied Thermal Engineering, vol. 133, no. 1, pp. 381-395, Mar. 2018.
[22] E. Hosseini, E. Aghadavoodi, G. Shahgholian, and H. Mahdavi-Nasab, "Intelligent pitch angle control based on gain-scheduled recurrent ANFIS," J. of Renewable Energy and Environment, vol. 6, no. 1, pp. 36-45, Winter 2019.
[23] L. He, K. Wen, C. Wu, J. Gong, and X. Ping, "Hybrid method based on particle filter and NARX for real-time flow rate estimation in multi-product pipelines," J. of Process Control, vol. 88, no. 1, pp. 19-31, Apr. 2020.
[24] M. Annabestani and N. Naghavi, "Nonlinear identification of IPMC actuators based on ANFIS-NARX paradigm," Sensors and Actuators A: Physical, vol. 209, no. 1, pp. 140-148, Mar. 2014.
[25] S. H. Mozafarpoor-Khoshrodi and G. Shahgholian, "Improvement of perturb and observe method for maximum power point tracking in wind energy conversion system using fuzzy controller," Energy Equipment and Systems, vol. 4, no. 2, pp. 111-122, Autumn 2016.
[26] G. Shahgholian, A. Hakim, and N. Behzadfar, "Motor speed maximum control in the resonance ratio controller for two-mass system using self-organizing fuzzy controller," International J. of Research Studies in Electrical and Electronics Engineering, vol. 6, no. 1, pp. 1-8, Spring 2020.