جایابی و تعیین ظرفیت بهینه منابع انرژی تجدیدپذیر و ایستگاه شارژ خودروی برقی به صورت همزمان با استفاده از الگوریتم بهینهسازی GA-PSO
محورهای موضوعی : مهندسی برق و کامپیوترمحمدحسن مرادی 1 , مصطفی رضایی مظفر 2 , پرهام محمد علیزاده 3
1 - دانشگاه بوعلی سینا همدان
2 - دانشگاه آزاد اسلامی واحد همدان
3 - دانشگاه آزاد اسلامی واحد قزوین
کلید واژه: بهینهسازی خودروی برقی ایستگاه شارژ منابع انرژی تجدیدپذیر الگوریتم ترکیبی GA-PSO,
چکیده مقاله :
نفوذ منابع انرژی تجدیدپذیر (RES) و خودروهای برقی به شبکه به دلیل ماهیت تصادفیبودنشان میتواند تأثیرات منفی بر عملکرد شبکه مثل کاهش کیفیت توان و افزایش تلفات داشته باشد. این چالشها میبایست با برنامهریزی دقیق بر مبنای تغییرات خروجی این منابع برای تأمین تقاضای اضافی ناشی از شارژ خودروها به حداقل برسد. به این منظور در این مقاله روشی جدید برای جایابی و تعیین ظرفیت همزمان منابع تجدیدپذیر و ایستگاه شارژ خودروهای برقی و مدیریت پروسه شارژ خودروها در شبکه ارائه شده است. تابعی چند هدفه در جهت کاهش تلفات توان، نوسانات ولتاژ، هزینه تأمین انرژی و هزینه تعمیر و نگهداری باتری خودرو معرفی شده که در آن یافتن مکان و ظرفیت منابع تجدیدپذیر و ایستگاه شارژ خودروی برقی به عنوان متغیرهای هدف انجام میگیرد. ضرایبی وابسته به سرعت باد، تابش خورشید و نسبت تقاضای پیک سیستم برای بهبود ضریب بار شبکه و مدیریت الگوی شارژ خودروها در ساعات پیک و غیر پیک معرفی شده است. الگوریتم بهینهسازی ترکیبی GA-PSO بهبودیافته برای حل مسئله بهینهسازی در چهار سناریو مختلف استفاده شده و عملکرد روش مذکور با شبیهسازی بر روی شبکه تست IEEE 33باسه در نرمافزار Matlab بررسی شده است.
Due to the stochastic nature of renewable energy sources (RES) and electric vehicles (EV) load demand, large scale penetration of these resources in the power systems can stress the reliable network performance, such as reducing power quality, increasing power losses, and voltage deviations. These challenges must be minimized by optimal planning based on the variable output from RES to meet the additional demand caused by EV charging. In this paper, a novel method for optimal locating and sizing of RES and EV charging stations simultaneously and managing vehicle charging process is provided. A multi-objective optimization problem is formulated to obtain objective variables in order to reduce power losses, voltage fluctuations, charging and demand supplying costs, and EV battery cost. In this optimization problem, the location and capacity of RES and EV charging stations are the objective variables. Coefficients which are dependent on wind speed, solar radiation, and hourly peak demand ratio for the management of the EV charging pattern in low load hours are introduced. GA-PSO hybrid improved optimization algorithm is used to solve the optimization problem in five different scenarios. The performance of the proposed method on IEEE 33-bus system has been investigated to validate the effectiveness of the novel GA-PSO method to optimal sitting and sizing of RES and EV charging stations simultaneously
[1] F. Fazelpour, M. Vafaeipour, O. Rahbari, and M. A. Rosen, "Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics," Energy Conversion and Management, vol. 77, no. ???, pp. 250-261, Jan. 2014.
[2] International Energy Outlook 2011: Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, U. S. Department of Energy, Washington DC, 2011.
[3] M. H. Amini, K. G. Boroojeni, and C. J. Wang, "Effect of electric vehicle parking lot's charging demand as dispatchable loads on power loss," in Proc. IEEE Int. Conf. on Electro Information Technolog,y EIT'16, vol. ???, pp. ???-???, May 2016.
[4] A. Changsun, C. T. Li, and H. Peng, "Optimal decentralized charging control algorithm for electrified vehicles connected to smart grid," J. Power Sources, vol. 196, no. 23, pp. 10369-10379, ???. 2011.
[5] W. Kempton and A. Dhanju, "Electric vehicles with V2G," Wind-Tech International, vol. 2, no. 2, pp. 18-21, Mar. 2006.
[6] T. Katrasnik, "Energy conversion phenomena in plug-in hybrid-electric vehicles," Energy Conversion and Management, vol. 52, no. 7, pp. 2637-2650, ???. 2011.
[7] W. Kempton and J. Tomic, "Vehicle-to-grid power fundamentals: calculating capacity and net revenue," J. of Power Sources, vol. 144, no. 1, pp. 268-279, ???. 2005.
[8] M. Ehsani, M. Falahi, and S. Lotfifard, "Vehicle to grid services: potential and applications," Energies, vol. 5, no. 10, pp. 4076-4090, ???. 2012.
[9] D. Freund, M. Lutzenberger, and S. Albayrak, "Costs and gains of smart charging electric vehicles to provide regulation services," Procedia Computer Science, vol. 10, no. ???, pp. 846-853, ???. 2012.
[10] M. H. Amini, O. Karabasoglu, and M. D. Ilic, "ARIMA-based demand forecasting method considering probabilistic of electric vehicle's parking lots," in Proc. IEEE Power and Energy and Energy Society General Meeting, , vol. ???, pp. ???-???, Jul. 2015.
[11] J. A. P. Lopes, F. J. Soares, and P. M. R. Almeida, "Integration of electric vehicles in the electric power system," in Proc. of the IEEE, vol. 99, no. 1, pp. 168-183, Jan. 2011.
[12] J. de Hoog, et al., "The importance of spatial distribution when analysing the impact of electric vehicles on voltage stability in distribution networks," Energy System, vol. 6, no. 1, pp. 63-84, 2014.
[13] M. Honarmand, A. Zakariazadeh, and S. Jadid, "Self-scheduling of electric vehicles in an intelligent parking lot using stochastic optimization," J. of the Franklin Institute, vol. 352, no. 2, pp. 449-467, ???. 2015.
[14] M. Honarmand, A. Zakariazadeh, and S. Jadid, "Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition," Energy, vol. 65, no. ???, pp. 572-579, ???. 2014.
[15] Z. Liu, F. Wen, and G. Ledwich, "Optimal planning of electric-vehicle charging stations in distribution systems," IEEE Trans. on Power Delivery, vol. 28, no. 1, pp. 102-110, Jan. 2013.
[16] A. T. Davda, B. Azzopardi, B. R. Parekh, and M. D. Desai, "Dispersed generation enable loss reduction and voltage profile improvement in distribution network - case study, Gujarat India," IEEE Trans. on Power Systems, vol. 29, no. 3, pp. 1242-1249, May 2014.
[17] D. Q. Hung, N. Mithulananthan, and R. C. Bansal, "An optimal investment planning framework for multiple distributed generation units in industrial systems," Applied Energy, vol. 124, no. ???, pp. 62-72, Jul. 2014.
[18] M. H. Moradi, M. Abedini, S. M. R. Tousi, and S. M. Hosseinian, "Optimal sitting and sizing of renewable energy sources and charging stations simultaneously based on differential evolution algorithm," International J. of Electrical Power and Energy Systems, vol. 73, no. ???, pp. 1015-1024, Dec. 2015.
[19] H. Turton and F. Moura, "Vehicle-to-grid systems for sustainable development: an integrated energy analysis," Technological Forecasting and Social Change, vol. 75, no. 8, pp. 1091-1108, ???. 2008.
[20] M. Shafie-khah and J. P. S. Catalao, "A stochastic multi-layer agent based model to study electricity market participants behavior," IEEE Trans. on Power Systems, vol. 30, no. 2, pp. 867-881, Mar. 2015.
[21] A. El-Zonkoly, "Intelligent energy management of optimally located renewable energy systems incorporating PHEV," Energy Conversion and Management, vol. 84, no. ???, pp. 427-435, ???. 2014.
[22] W. Su and C. Mo-Yuen, "Performance evaluation of a PHEV parking station using particle swarm optimization," in Proc. Power and Energy Society General Meeting, San Diego, USA, vol. ???, pp. ???-???, ???. 2011.
[23] J. Donadee and M. Ilic, "Stochastic optimization of grid to vehicle frequency regulation capacity bids," IEEE Trans. on Smart Grid, vol. 5, no. 2, pp. 1061-1069, Mar. 2014.
[24] A. Gholami, J. Ansari, M. Jamei, and A. Kazemi, "Environmental/ economic dispatch incorporating renewable energy sources and plug-in vehicles," IET Generation, Transmission, and Distribution, vol. 8, no. 12, pp. 2183-2198, Dec. 2014.
[25] M. Moradijoz, M. Parsa Moghadam, M. R. Haghifam, and E. Alishahi, "A multi-objective optimization problem for allocating parking lots in a distribution network," International J. of Electrical Power and Energy Systems, vol. 46, no. ???, pp. 115-122, ???. 2013.
[26] W. Pei, Y. Du, W. Deng, K. Sheng, H. Xiao, and H. Qu, "Optimal bidding strategy and intra-market mechanism of micro-grid aggregator in real-time balancing market," IEEE Trans. on Industrial Informatics, vol. 12, no. ???, pp. 587-596, Jan. 2016.
[27] X. Zhang and G. Hug, "Bidding strategy in energy and spinning reserve markets for aluminium smelters' demand response," in Proc. IEEE ISGT Conf., vol. ???, pp. ???-???, ???. 2015.
[28] W. Su and M. Y. Chow, "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, vol. 96, no. ???, pp. 171-182, ???. 2012.
[29] X. Zhang, G. Hug, Z. Kolter, and I. Harjunkoski, "Industrial demand response by steel plants with spinning reserve provision," in Proc. IEEE North American Power Symp., vol. ???, pp. ???-???, ???. 2015.
[30] http://www.ieso.ca/Pages/Power-Data/default.aspx.
[31] T. Markvart, Solar Electricity, 2nd Ed., USA: Wiley, 2000.
[32] http://www.chevrolet.com/volt-electric-car.html.
[33] http://automobiles.honda.com/accord-plug-in/.
[34] http://www.ford.com/cars/fusion/trim/seenergi/.
[35] http://www.toyota.com/prius-plug-in/.
[36] IEEE Reliability Test System Task Force of the Applications of Probability Methods Subcommittee, "IEEE reliability test system," IEEE Trans. on Power Apparatus and Systems, vol. 98, no. 6, pp. 2047-2054, Nov./Dec. 1979.
[37] S. Letendre, P. Denholm, and P. Lilienthal, " Plug-in hybrid and all-electric vehicles: new load, or new resource," Public Utility Fortnightly, vol. 144, no. 12, pp. 28-37, Dec. 2006.