راهبرد پیشنهاددهی نیروگاه مجازی در بازار انرژی و خدمات جانبی رزرو چرخان و توان راکتیو با در نظر گرفتن چند نقطه اتصال
محورهای موضوعی : مهندسی برق و کامپیوترحسین نظامآبادی 1 , مهرداد ستایشنظر 2
1 - دانشگاه شهید بهشتی
2 - دانشگاه شهید بهشتی
کلید واژه: برنامهریزی غیر خطی آمیخته با عدد صحیح توان راکتیو خدمات جانبی رزرو چرخان نیروگاه مجازی,
چکیده مقاله :
در اين مقاله، مسئله پیشنهاددهی نیروگاه مجازی در بازار انرژی و همزمان رزرو چرخان و متوالی توان راکتیو بررسی شده است. بدین منظور مدلی غیر تعادلی بر اساس در مدار قرار دادن قیمت بنیان واحدها مقید به قیود امنیت (SCPBUC) که تعادل عرضه- تقاضا و امنیت داخلی نیروگاه مجازی را به حساب میآورد، ارائه شده است. با استفاده از مدل ارائهشده نیروگاه مجازی علاوه بر حضور در بازار انرژی برای بهرهبردار سیستم قدرت، خدمات رزرو چرخان و راکتیو را فراهم میآورد. مسئله پیشنهاددهی نیروگاه مجازی یک بهینهسازی غیر محدب غیر خطی آمیخته با عدد صحیح میباشد که با استفاده از برنامهریزی غیر خطی آمیخته با عدد صحیح (MINLP) حل شده است.
In this paper the optimal bidding strategy of virtual power plant (VPP) in a joint market of energy and spinning reserve service, coupled with reactive power market is investigated. The proposed bidding strategy model is non-equilibrium based on security-constrained price-based unit commitment (SCPBUC), which considers the VPP supply-demand balancing and security constraints. The model is a non-convex mixed-integer nonlinear optimization problem with inter-temporal constraints. It is solved by mixed-integer nonlinear programming (MINLP), and the solution is a single optimal bidding profile for each of the energy, spinning reserve, and reactive power markets.
[1] تارنمای دفتر خصوصیسازی صنعت برق ایران، http://psp.moe.gov.ir.
[2] T. J. Hammons, "Integrating renewable energy sources into european grids," Electrical Power and Energy Systems, vol. 30, no. 8, pp. 462-475, Oct. 2008.
[3] A. A. S. Algarni and K. Bhattacharya, "Disco operation considering DG units and their goodness factors," IEEE Trans. Power Syst., vol. 24, no. 4, pp. 1831-1840, Nov. 2009.
[4] A. A. S. Algarni and K. Bhattacharya, "A generic operations framework for discos in retail electricity markets," IEEE Trans. Power Syst., vol. 24, no. 1, pp. 356-367, Feb. 2009.
[5] S. Golshannavaz, S. Afsharnia, and F. Aminifar, "Smart distribution grid: optimal day-ahead scheduling with reconfigurable topology," IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2402-2411, Aug. 2014.
[6] M. Marzband, A. Sumper, J. L. Dominguez-Garcia, and R. Gumara-Ferret, "Experimental evaluation of a real time energy management system for stand-alone micro grids in day-ahead markets," Energy Conversion and Management, vol. 76, , pp. 314-322, 2013.
[7] S. Awerbuch and A. Preston, The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry, Kluwer Academic Publisher, Massachusetts, Apr. 1997.
[8] K. Dielmann and A. van der Velden, "Virtual power plants (VPPs): a new perspective for energy generation?," in Proc. 9th Int. Scientific and Practical Conf. of Students, Post-Graduates and Young Scientists, Proc. Modern Techniques and Technologies, MTT'03, pp. 18-20, Apr. 2003.
[9] E. A. Setiawan, Concept and Controllability of Virtual Power Plant, Ph. D Dissertation, Dept. ECE, University of Kassel, 2007.
[10] S. You, Developing Virtual Power Plant for Optimized Distributed Energy Resources Operation and Integration, Ph. D Thesis, Technical University of Denmark, Sep. 2010.
[11] M. Braun and P. Strauss, "A review on aggregation approaches of controllable distributed energy units in electrical power systems," International J. of Distributed Energy Resources, vol. 4, no. 4, pp. 297-319, Jun. 2008.
[12] J. A. Pecas Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins, "Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities," Electric Power Systems Research, vol. 77, no. 9, pp. 1189-1203, Jul. 2007.
[13] R. Caldon, A. Rossi Patria, and R. Turri, "Optimal control of a distribution system with a virtual power plant," in Proc. 6th Conf. of Bulk Power System Dynamics and Control, pp. 4625-4630, Cortina d’Ampezzo, Italy, Aug. 2004.
[14] D. Pudjianto, C. Ramsay, and G. Strbac, "Virtual power plant and system integration of distributed energy resources," IET Renewable Power Generation, vol. 1, no. 1, pp. 10-16, Mar. 2007.
[15] H. Nezamabadi, P. Nezamabadi, M. Setayeshnazar, and G. B. Gharehpetian, "Participation of virtual power plants in energy market with optimal bidding based on nash-SFE equilibrium strategy and considering interruptible load," in Proc. the 3rd Conf. on Thermal Power Plant, 7 pp., Tehran, Iran, Oct. 2011.
[16] ح. نظامآبادی، پ. نظامآبادی، م. ستایش نظر و گ. قره پتیان، "قیمتدهی بهینه نیروگاههای مجازی با استفاده از استراتژی تعادلی نش-SFE،" بیست و ششمین کنفرانس بینالمللی برق ایران، پژوهشگاه نیرو، 7 صص. آبان 1390.
[17] M. Peik-Herfeh, H. Seifi, and M. Sheikh-El-Eslami, "Decision making of a virtual power plant under uncertainties for bidding in a day-ahead market using point estimate method," International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, pp. 88-98, Jan. 2013.
[18] M. Peik-Herfeh, H. Seifi, and M. Sheikh-El-Eslami, "Two-stage approach for optimal dispatch of distributed energy resources in distribution networks considering virtual power plant concept," International Transactions on Electrical Energy Systems, vol. 21, no. 1, pp. 43-63, Jan. 2012.
[19] E. Mashhour and S. M. Moghaddas-Tafreshi, "Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part i: problem formulation," IEEE Trans. Power Syst., vol. 26, no. 2, pp. 949-956, May 2011.
[20] E. Mashhour and S. M. Moghaddas-Tafreshi, "Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part ii: numerical analysis," IEEE Trans. Power Syst., vol. 26, no. 2, pp. 957-964, May 2011.
[21] A. Rabiee, H. A. Shayanfar, and N. Amjady, "Reactive power pricing problems & a proposal for a competitive market," IEEE Power Energy Mag., vol. 7, no. 1, pp. 18-32, Jan 2009.
[22] M. Braun, Provision of Ancillary Services by Distributed Generators, Ph.D Dissertation, Dept. ECE, University of Kassel, Dec. 2008.
[23] M. Shahidehpour, H. Yamin, and L. Zuyi, Market Operation in Electric Power Systems, New York: Wiley, 2002.
[24] N. Amjady, J. Aghaei, and H. A. Shayanfar, "Stochastic multiobjective market clearing of joint energy and reserves auctions ensuring power system security," IEEE Trans. Power Syst., vol. 24, no. 4, pp. 1841-1854, Nov. 2009.
[25] A. Rabiee, H. A. Shayanfar, and N. Amjady, "Coupled energy and reactive power market clearing considering power system security," Energy Conversion and Management, vol. 50, no. 4, pp. 907-915, Apr. 2009.
[26] E. Mashhour and S. M. Moghaddas-Tafreshi, "Mathematical modeling of electrochemical storage for incorporation in methods to optimize the operational planning of an interconnected micro grid," J. Zhejiang Univ. SCIENCE C (Computer and Electronics), vol. 11, no. 4, pp. 737-750, Sep. 2010.
[27] Generalized Algebraic Modeling Systems (GAMS), [Online]. Available: http://www.gams.com.
[28] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, New York: John Wiley & Sons, 2nd Ed., p. 104, 1996.