یادگیری ساختاری شبکههای بیزی یک رهیافت مبتنی بر آتاماتاهای یادگیر
محورهای موضوعی : مهندسی برق و کامپیوترمحمدرضا ملاخلیلی میبدی 1 , محمدرضا میبدی 2
1 - دانشگاه آزاد اسلامی، واحد میبد
2 - دانشگاه صنعتی امیرکبیر
کلید واژه:
چکیده مقاله :
یکی از مسایل جالب در هوش مصنوعی ساخت شبکه بیزی بر اساس نمونههایی از دادهها است؛ یعنی فرض کنید یک شبکه بیزی N روی مجموعه متغیرهای V مفروض است. هدف، ساخت یک شبکه بیزی- استخراج مجموعهای از روابط علت/ معلولی- میان مجموعه متغیرها بر اساس نمونههایی که از N استخراج شده و بدون در اختیار داشتن N است. از این مسأله در متون با عنوان یادگیری ساختاری شبکه بیزی یاد میشود. یکی از روشهای مهم در یادگیری ساختاری شبکههای بیزی با استفاده از دادههای نمونه، استفاده از معیارهای مبتنی بر امتیاز برای ارزیابی میزان برازندگی یک ساختار بیزی مفروض با دادههای نمونه و جست و جو در میان ساختارهای ممکن است. جست و جو برای یافتن یک ساختار مناسب برای شبکه بیزی که بیشترین سازگاری را با نمونهها داشته باشد غالباً از طریق جست و جو در فضای ساختارها با استفاده از تکنیکهای جست و جوی استاندارد یا الهامگرفته از طبیعت نظیر تپهنوردی حریصانه، الگوریتمهای ژنتیک، شبیهسازی حرارتی یا الگوریتم تبرید، بهینهسازی کلونی مورچهها و نظایر آن صورت میگیرد. در این مقاله یک روش جدید مبتنی بر آتاماتای یادگیر برای یادگیری ساختاری شبکه بیزی ارائه شده است. در این روش آتاماتای یادگیر به عنوان یک ابزار جستجوی تصادفی مورد استفاده قرار میگیرد. از ویژگیهای روش جدید پیشنهادی جستجوی همزمان در فضای جایگشتهای ممکن از متغیرها (فضای ترتیب متغیرها) و فضای ساختارها (فضای DAGها) است. ضمن بررسی ریاضی الگوریتم پیشنهادی، روش جدید روی تعدادی از شبکههای نمونه مورد آزمایش قرار گرفته است.
The structure of a Bayesian network represents a set of conditional independence relations that hold in the domain. Learning the structure of the Bayesian network model that represents a domain can reveal in sights into its underlying causal structure. Automatically learning the graph structure of a Bayesian network is a challenge pursued within artificial intelligence studies. In this paper, a new algorithm based on learning automata is proposed for learning the structure of the Bayesian networks. In this algorithm, automata is used as a tool for searching in structure’s space (DAG’s space) of the Bayesian networks. The mathematical behavior of the proposed algorithm is studied.
