کاربرد شبکههای عصبی مصنوعی در طراحی یک کنترلکننده هوشمند فرکانس برای یک ریزشبکه جزیرهای
محورهای موضوعی : مهندسی برق و کامپیوترفرشید حبیبی 1 , حسن بیورانی 2 , جمال مشتاق 3
1 - دانشگاه کردستان
2 - دانشگاه کردستان
3 - دانشگاه کردستان
کلید واژه: تنظیم آنلاین شبکههای عصبی مصنوعی ریزشبکه کنترل ثانویه فرکانس,
چکیده مقاله :
افزایش نیاز به انرژی الکتریکی، کمبود سوختهای فسیلی و نگرانیها در رابطه با مسایل زیستمحیطی، سبب ورود هرچه بیشتر منابع جدید از جمله منابع تولید پراکنده و تجدیدپذیر انرژی در سیستمهای قدرت مدرن شده است. ریزشبکهها به عنوان یکی از جدیدترین مفاهیم در سیستمهای قدرت از چندین منبع تولید کوچک و بارهای الکتریکی محلی تشکیل شدهاند. با افزایش تعداد ریزشبکهها بر میزان پیچیدگی و غیر خطی بودن سیستمهای قدرت افزوده شده و سبب میشود که کنترلکنندههای مرسوم و غیر منعطف، کارایی مناسبی را در بازه وسیعی از نقاط کار نشان ندهند. از این رو احتیاج به روشهای کنترلی هوشمندتر و مناسبتر بیش از پیش احساس میشود. در این مقاله، شبکههای عصبی مصنوعی به عنوان یکی از قویترین ابزارها در فرایندهای بهینهسازی و هوشمندسازی سیستمها به کار گرفته شده است تا ضرایب یک کنترلکننده کلاسیک تناسبی- انتگرالی (PI) را به صورت خودکار تنظیم و بهینه نماید. کنترلکننده PI، در حلقه ثانویه کنترل فرکانس یک ریزشبکه جزیرهایی گمارده شده است. عملکرد مناسب و بهینه روش پیشنهادی در مقایسه با روشهای کلاسیک در طی شبیهسازیهای مختلف نشان داده میشود.
Increasing electrical energy demand, as well as fossil fuel shortages and environmental concerns have caused to use uncommon sources such as distributed generations (DGs) and renewable energy sources (RESs) into modern power systems. A microgrid (MG) system consists of several DGs and RESs which is responsible to provide both electrical and heat powers for local loads. Due to the MGs nonlinearity/complexity which is imposed to the conventional power systems, classical and nonflexible control structures may not represent desirable performance over a wide range of operating conditions. Therefore, more flexible/intelligent control methods are needed most of the past. Hence, in this paper addresses to design an online/self-tuning PI-controller based on artificial neural networks (ANNs) for optimal regulating the MG systems frequency.
[1] P. Barker and R. De Mello, "Determining the impact of distributed generation on power systems. I. Radial distribution systems," in Proc. IEEE Power Engineering Society Summer Meeting, vol. 3, pp. 1645-1656, Seattle, WA, US,16-20 Jul. 2001.
[2] H. Puttgen, P. MacGregor, and F. Lambert, "Distributed generation: semantic type or the dawn of a new era?," IEEE Trans. on Power and Energy, vol. 1, no. 1, pp. 22-29, Jan/Feb. 2003.
[3] F. Habibi, A. H. Naghshbandy, and H. Bevrani, "Robust voltage controller design for an isolated microgrid using Kharitonov's theorem and D-stability concept," Int. J. of Electrical Power & Energy Systems, vol. 44, no. 1, pp. 656-665, Jan. 2013.
[4] R. H. Lasseter, J. H. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp, E. Linton, H. Hurtado, and J. Roy, "CERTS microgrid laboratory test bed," IEEE Trans. on Power Delivery, vol. 26, no. 1, pp. 325-332, Jan. 2011.
[5] C. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active Distribution Networks, the Institution of Engineering and Technology, London, United Kingdom, 2009.
[6] N. W. A. Lidula and A. D. Rajapakse, "Microgrids research: a review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 186-202, Jan. 2011.
[7] H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, and Y. Mitani, "Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach," IEEE Trans. on Smart Grid, vol. 3, no. 4, pp. 1-10, Dec. 2012.
[8] R. H. Lasseter, "MicroGrids," in Proc IEEE Power Engineering Society Winter Meeting, vol. 1, pp. 305-308, 2002.
[9] R. H. Lasseter, "Certs microgrid," in Proc. IEEE Int. Conf. on System of Systems Engineering, SoSE'07, 5 pp., Apr. 2007.
[10] R. H. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromson, A. Meliopoulous, and R. J. Yinger, "The CERTS microgrid concept," White Paper for Transmission Reliability Program, Office of Power Technologies, U.S. Dept. Energy, Apr. 2002.
[11] R. H. Lasseter and P. Paigi, "Microgrid: a conceptual solution," in Proc. IEEE 35th Annual the Power Electronics Specialists Conf., PESC'04, vol. 6, pp. 4285-4290, 20-25 Jun. 2004.
[12] P. Basak, A. K. Saha, S. Chowdhury, and S. P. Chowdhury, "Microgrid: control techniques and modeling," in Proc. of the 44th Int. Universities Power Engineering Conf., 5 pp., 1-4 Sep. 2009.
[13] J. Pecas Lopes, A. Moreira, and A. G. Madureira, "Defining control strategies for microgrids islanded operation," IEEE Trans. on Power Systems, vol. 21, no. 2, pp. 919-920, May 2006.
[14] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, "Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization," IEEE Trans. on Industrial Electronics, vol. 58, no. 1, pp. 158-172, Jan. 2011.
[15] D. J. Lee and L. Wang, "Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: time-domain simulations," IEEE Trans. on Energy Conversion, vol. 23, no. 1, pp. 311-320, Mar. 2008.
[16] T. Senjyu, T. Nakaji, K. Uezato, and T. Funabashi, "A hybrid power system using alternative energy facilities in isolated island," IEEE Trans. on Energy Conversion, vol. 20, no. 2, pp. 406-414, Jun. 2005.
[17] D. Xue, Y. Chen, and D. P. Atherton, Linear Feedback Control: Analysis and Design with MATLAB, Society for Industrial and Applied Mathematics, 2009.
[18] H. Bevrani, Robust Power System Frequency Control, Springer, 2009.
[19] P. Kundur, J. Paserba, V. Ajjarapu, D. Hill, J. A. Stankovic, C. Taylor, T. Van Cutsem, and V. Vittal, "Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions," Power Systems, IEEE Trans. on, vol. 19, no. 3, pp. 1387-1401, Aug. 2004.
[20] H. Bevrani and T. Hiyama, Neural Network Based AGC Design, Chapter 5 in Intelligent Automatic Generation Control, New York: CRC Press (Taylor & Francis Group), Apr. 2011.
[21] A. A. El-Keib and X. Ma, "Application of artificial neural networks in voltage stability assessment," IEEE Trans. on Power Systems, vol. 10, no. 4, pp. 1890-1896, Nov. 1995.
[22] T. Hiyama, M. Tokieda, W. Hubbi, and H. Andou, "Artificial neural network based dynamic load modeling," IEEE Trans. on Power Systems, vol. 12, no. 4, pp. 1576-1583, Nov. 1997.
[23] P. Subbaraj and K. Manickavasagam, "Automatic generation control of multi-area power system using fuzzy logic controller," European Trans. on Electrical Power, vol. 18, no. 3, pp. 266-280, Apr. 2008.
[24] S. R. Chu, R. Shoureshi, and M. Tenorio, "Neural networks for system identification," IEEE Control Systems Magazine, vol. 10, no. 3, pp. 31-35, Apr. 1990.
[25] C. T. Hsu, M. S. Kang, and C. S. Chen, "Design of adaptive load shedding by artificial neural networks," IEE Proc. Generation, Transmission, and Distribution, vol. 152, no. 3, pp. 415-421, 2005.
[26] H. Bevrani, (2011). Artificial Neural Networks, Lecture notes, available on line from http://www.bevrani.com/ANN/ANN.htm.
[27] M. M. Gupta, Static and Dynamic Neural Networks: from Fundamentals to Advanced Theory, IEEE Press & John Wiley, 2003.