استفاده از انرژی بالون مبتنی بر کانتورلت در مدل کانتور فعال پارامتری بهمنظور تقطيع شیء بافتی در پسزمينه بافتی
محورهای موضوعی : مهندسی برق و کامپیوترپیمان معلم 1 , هما تحويليان 2 , سیدحسن منجمی 3
1 - دانشگاه اصفهان
2 - دانشگاه آزاد اسلامي واحد نجفآباد
3 - دانشگاه اصفهان
کلید واژه: مدلهای کانتور فعال پارامتریک تابع انرژی ویژگیهای بافت کانتورلت,
چکیده مقاله :
شناسایی مرزهای هدف یکی از موضوعات مورد علاقه در بینایی ماشین و پردازش تصویر است. مدلهای کانتور فعال یکی از روشهای معروف در شناسایی هدف و قطعهبندی اشیا میباشند. این مقاله روشی جدید برای قطعهبندی اشیای بافتی با استفاده از مدلهای کانتور فعال پارامتریک معرفی میکند. در روش پیشنهادی با اضافهکردن یک انرژی بالون به تابع انرژی مدل کانتور فعال پارامتریک، امکان شناسایی و قطعهبندی شیء بافتی در پسزمینه بافتی فراهم میشود. در این روش، ویژگیهای بافتی نقاط کانتور با استفاده از تبدیل کانتورلت محاسبه میشود، سپس با مقایسه این ویژگیها با ویژگیهای بافتی شیء هدف که بهصورت اطلاعات قبلی وجود دارد، جهت حرکت بالون مشخص میشود که در نتیجه آن، منحنی کانتور بهمنظور انطباق بر مرزهای شیء هدف منبسط یا منقبض میشود. نتایج نشان میدهد که روش پیشنهادی نسبت به روش کانتور فعال مبتنی بر ویژگیهای بافتی گشتاور دارای دقت بالاتری میباشد.
Object boundaries detection is one of the interesting subjects in computer and image processing. Active contour models are one of the popular methods in object detection and segmentation. This paper presents a new method for segmentation of texture object by means of parametric active contour. In this proposed method, by adding a balloon energy to energy function of the parametric active contour model, the detection and segmentation of textured object against textured background would be achieved. In this method, texture feature of contour and object points are calculated by contourlet transform. Then by comparing these features with texture feature of target object, which are available as prior information, movement direction of balloon is defined, whereupon contour curves are expanded or contracted in order to adapt to the target boundaries. Experimental results demonstrate that the active contour based on contourlet (Contourlet-ACM) has higher segmentation accuracy than the active contour based on moment (Moment-ACM) and active contour based on DWHT (DWHT-ACM).
[1] H. Eng, M. Thida, B. Chew, K. Leman, and S. Anggrelly, "Model - based detection and segmentation of vehicles for intelligent transportation system," in Proc. 3rd IEEE Conf., Industrial Electronics and Applicationspp. 2127-2132, Aug. 2008.
[2] K. Huang and T. Tan, "Vs - star: a visual interpretation system for visual surveillance," Pattern Recognition Letter, vol. 31, no. 14, pp. 2265-2285, Oct. 2010.
[3] N. Harandi, S. Sadri, N. Moghaddam, and R. Amirfattahi, "An automated method for segmentation of epithelial cervical cells in images of thin Prep," Journal of Medical Systems, vol. 34, no. 6 pp. 1043-1058, Dec. 2010.
[4] Q. Chen, Q. Sun, and P. Heng, "Two - stage object tracking method based on kernel and active contour," IEEE Trans. on Circuits and System for Video Technology, vol. 20, no. 4, pp. 605-609, Apr. 2010.
[5] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: active contour models," in Proc. 1st Int. Conf. Computer Vision, London, pp. 259-269, 1987.
[6] V. Caselles, F. Catte, T. Coll, and F. Dibos, "A geometric model for active contours in image processing," Numer. Math., vol. 66, no. 1, pp. 1-32, Dec. 1993.
[7] R. Malladi, J. A. Sethian, and B. C. Vemuri, "Shape modeling with front propagation: a level set approach," IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 2, pp. 158-175, Feb. 1995.
[8] L. Yang, P. Meer, and D. J. Foran, "Unsupervised segmentation based on robust estimation and color active contour models," IEEE Trans. on Information Technology in Biomedicine, vol. 9, no. 3, pp. 475-486, Sep. 2005.
[9] W. Kim and J. Jang Lee, "Object tracking based on the modular active shape model," Mechatronics, vol. 15, no. 3, pp. 371-402, Apr. 2005.
[10] J. L. Prince and C. Xu, "A new external force model for snakes," in Image and Multidimensional Signal Processing Workshop, pp. 30-31, 1996.
[11] J. Ivins and J. Porrill, "Active region models for segmenting medical images," in Proc. of the 1st Int. Conf. on Image Processing, vol. 3, pp. 227-231, Austin, TX, US,Nov. 1994.
[12] H. Schaub and C. Smith, "Color snakes for dynamic lighting conditions on mobile manipulation platforms," in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Albuquerque, NM, USA, vol. 2, pp. 1272-1277, Oct. 2003.
[13] A. Vard, P. Moallem, and A. Naghshnilchi, "Texture based parametric active contour target detection and tracking," International J. of Imaging System Technology, vol. 19, no. 3, pp. 187-198, Sep. 2009.
[14] G. Hamarneh, A. Chodorowski, and T. Gustavsson, "Active contour models: application to oral lesion detection in color images," in Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 4, pp. 2458-2463, Oct. 2000.
[15] L. D. Cohen and I. Cohen, "Finite - element methods for active contour models and balloons for 2 - D and 3 - D images," IEEE Trans, Pattern Anal., vol. 15, no. 11, pp. 1131-1147, Nov. 1993.
[16] C. Xu and J. L. Prince, "Snakes, shapes, and gradient vector flow," IEEE Trans. Image Process., vol. 7, no. 3, pp. 359-369, Mar. 1998.
[17] L. D. Cohen, "On active contour models and balloons," Computer Vision, Graphics and Image Processing, Image Understanding, vol. 53, no. 2, pp. 211-218, Mar. 1991.
[18] K. W. Sum and P. Y. S. Cheung, "Boundary vector field for parametric active contours," Pattern Recognit., vol. 40, no. 6, pp. 1635-1645, Jun. 2006.
[19] C. Davatzikos and J. L. Prince, "An active contour model for mapping the cortex," IEEE Trans. Med. Imaging, vol. 14, no. 1, pp. 65-80, Mar. 1995.
[20] T. Wang, I. Cheng, and A. Basu, "Fluid vector flow and applications in brain tumor segmentation," IEEE Trans. on Biomedical Egineering, vol. 56, no. 3, pp. 781-789, Mar. 2009.
[21] ها. تحویلیان، پ. معلم و ا. ح. منجمی، "استفاده از انرژی مبتنی بر ویولت و کانتورلت جهت تقطیع شیء بافتی در پسزمینه بافتی،" اولین همایش منطقهای پژوهش در فناوری برق، دانشگاه آزاد اسلامی واحد نجفآباد، آذر 1389.
[22] ها. تحویلیان، پ. معلم و ا. ح. منجمی، "استفاده از انرژی مبتنی بر فیلتر گابور برای تقطیع شیء بافتی در پسزمینه بافتی،" اولین همایش منطقهایی پژوهش در فناوری برق، دانشگاه آزاد اسلامی واحد نجفآباد، آذر 1389.
[23] A. Vard, A. Monadjemi, K. Jamshidi, and N. Movahhedinia, "Fast texture energy based image segmentation using directional walsh - hadamard transform and parametric active contour models," Expert Systems with Applications, vol. 38, no. 9, pp. 11722-11729, Sep. 2011.
[24] A. Monadjemi and P. Moallen, "Texture classification using a novel walsh/hadamard transform," in Proc. 10th WSEAS Int Conf. on Computers, Vouliagmeni, pp. 1002-1007, Athens, Greece, Jul. 2006.
[25] P. Meerwald and A. Uhl, "A survey of wavelet domain watermarking algorithms," in Proc. of SPIE, Electronic Imaging, Security and Watermarking of Multimedia Contents ІІІ, vol. 4314, pp. 505-516, 2001.
[26] خ. مالكنژاد، ا. صلاحي و م. ش. معين، "روشي جديد براي نهاننگاري طيف گسترده تصاوير با استفاده از تبديل كانتورلت،" سيزدهمين کنفرانس ملي انجمن کامپيوتر ايران، صص. 243-235، اسفند 1386.
[27] M. N. Do and M. Vetterli, "The contourlet transform: an efficient directional multiresolution image representation," IEEE Trans. Image Processing, vol. 14, no. 12, pp. 2091-2106, Sep. 2005.
[28] P. Brodatz, Textures: a Photographic Album for Artists and Designers, Dover Publishing Co, 1966.