مروری بر هیدروژل های تزریق پذیر حساس به دما: خصوصیات و کاربرد آنها در مهندسی بافت
محورهای موضوعی : پليمرها و نانوفناوری
1 - گروه مهندسي شيمي
کلید واژه: پلیمر حساس به دما, مهندسی بافت, پلوگزامر,
چکیده مقاله :
هیدروژل های تزریقی تخریب پذیر، به طور گسترده در زمینه های متنوع پزشکی – دارویی از جمله تهیه زخم پوش ها، مهندسی بافت و تهیه محمل های رسانش دارو/ سلول و فاکتورهای رشد مورد استفاده قرار گرفته اند. بالاخص،طی دهه گذشته، کاربرد هیدروژل های تزریق پذیر حساس به دما، با توجه به ویژگی هایی از جمله انتقال فاز از حالت محلول به ژل در پاسخ به محرک خارجی، قابلیت شبیه سازی محیط ماتریس خارج سلولی به لحاظ ویژگی های فیزیکی-شیمیایی و زیستی(برای سلول ها) ، وجود مقادیر زیاد آب در ساختار، ایجاد بستری متخلخل جهت کاشت و تکثیر سلول ها و قابلیت انطباق مناسب با نقص های نامنظم به عنوان روش درمان کم تهاجمی، توجه قابل ملاحظه ای را به خود جلب کرده است. این سامانه های آب دوست پلیمری، پیش از استفاده، به صورت محلول آبی و سیال هستند؛ ولی پس از تزریق، تحت شرایط فیزیولوژیک، ضمن انتقال فاز به سرعت ژل می شوند. در این مقاله، ویژگی ها، مزایا و سازوکار ژل شدن هیدروژل های تزریق پذیر حساس به دما به طور خلاصه بیان شده و پس از مرور بخشی از مطالعات صورت گرفته در زمینه کاربرد احتمالی این سامانه ها در حوزه مهندسی بافت طی سال های اخیر، چالش های موجود در این حوزه مطرح می شود.
[1] Hoang Thi T. T., Sinh L. H., Huynh D. P., Nguyen D. H., Huynh C., Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications, Frontiers in Chemistry, 19, 2020.
[2] ParkK. M. , ParkK. D., Injectable Hydrogels: Properties and Applications, Encyclopedia of Polymer Science and Technology, 1-16, 2002.
[3] Portnov T., Shulimzon T. R., Zilberman M., Injectable Hydrogel-Based Scaffolds for Tissue Engineering Applications, Reviews in Chemical Engineering, 1, 91-107, 2017.
[4] Klouda L., Mikos A. G., Thermoresponsive Hydrogels in Biomedical Applications, European journal of pharmaceutics and biopharmaceutics, 1, 34-45, 2008.
[5] Matanović M. R., Kristl J., Grabnar P. A., Thermoresponsive Polymers: Insights Into Decisive Hydrogel Characteristics, Mechanisms of Gelation, and Promising Biomedical Applications, International journal of pharmaceutics, 1-2, 262-275, 2014.
[6] PhillipsD. J., Gibson M. I., Towards Being Genuinely Smart: Isothermally-Responsive Polymers as Versatile, Programmable Scaffolds for Biologically-Adaptable Materials, Polymer Chemistry, 7, 1033-1043, 2015.
[7] Huang H., Qi X., Chen Y., Wu Z., Thermo-sensitive Hydrogels for Delivering Bio therapeutic Molecules: A Review, Saudi Pharmaceutical Journal, 7, 990-999, 2019.
[8] Bansal K., Upadhyay P., Saraogi G., Rosling A., Rosenholm J., Advances in Thermo-Responsive Polymers Exhibiting Upper Critical Solution Temperature (UCST), EXPRESS polymer letters, 11, 974-992, 2019.
[9] Guo X., Wang L., Wei X., Zhou S., Polymer‐Based Drug Delivery Systems for Cancer Treatment, Journal of Polymer Science, Part A: Polymer Chemistry,22, 3525-3550, 2016.
[10] Zarrintaj P., Ramsey J. D., Samadi A., Atoufi Z., Yazdi M. K., Ganjali M. R., Amirabad L. M., Zangene E., Farokhi M., Formela K., Poloxamer: A Versatile Tri-Block Copolymer for Biomedical Applications, Acta Biomaterialia, 2020.
[11] Eslahi N., Abdorahim M., Simchi A., Smart Polymeric Hydrogels for Cartilage Tissue Engineering: a Review on The Chemistry and Biological Functions, Biomacromolecules, 11, 3441-3463, 2016.
[12] Altomare L., Bonetti L., Campiglio C. E., De Nardo L., Draghi L., Tana F., Farè S., Biopolymer-Based Strategies in The Design of Smart Medical Devices and Artificial Organs, International Journal of Artificial Organs, 6, 337-359, 2018.
[13] Russo E., Villa C., Poloxamer hydrogels for Biomedical Applications, Pharmaceutics, 12, 671, 2019.
[14] Makris E. A., Gomoll A. H., Malizos K. N., Hu J. C., Athanasiou K. A., Repair and Tissue Engineering Techniques for Articular Cartilage, Nature Reviews Rheumatology, 1, 21, 2015.
[15] Eslahi N., Simchi A., Mehrjoo M., Shokrgozar M. A., Bonakdar S., Hybrid Cross-Linked Hydrogels Based on Fibrous Protein/Block Copolymers and Layered Silicate Nanoparticles: Tunable Thermosensitivity, Biodegradability and Mechanical Durability, RSC advances, 67, 62944-62957, 2016.
[16] Shi K., Wang Y.-L., Qu Y., Liao J.-F., Chu B.-Y., Zhang H.-P., Luo F., Qian Z.-Y., Synthesis, Characterization, and Application of Reversible PDLLA-PEG-PDLLA Copolymer Thermogels in Vitro and in Vivo, Scientific Reports, 19077, 2016.
[17] Vagaská B., Bačáková L., Filovaá E., Balík K., Osteogenic Cells on Bio-Inspired Materials for Bone Tissue Engineering, Physiological Research, 3, 2010.
[18] Diniz I. M., Chen C., Xu X., Ansari S., Zadeh H. H., Marques M. M., Shi S., Moshaverinia A., Pluronic F-127 Hydrogel As APromising Scaffold for Encapsulation Of Dental-Derived Mesenchymal Stem Cells, Journal of Materials Science: Materials in Medicine,3, 153, 2015.
[19] Deliormanlı A. M., Türk M., Flow Behavior and Drug Release Study of Injectable Pluronic F-127 Hydrogels containing Bioactive Glass and Carbon-Based Nanopowders, Journal of Inorganic and Organometallic Polymers and Materials, 4, 1184-1196, 2020.
[20] Koehl M., Abrous D. N., A New Chapter In The Field Of Memory: Adult Hippocampal Neurogenesis, European Journal of Neuroscience, 6, 1101-1114, 2011.
[21] Nourbakhsh M., Zarrintaj P., Jafari S. H., Hosseini S. M., Aliakbari S., Pourbadie H. G., Naderi N., Zibaii M. I., Gholizadeh S. S., Ramsey J. D., Thomas S., Farokhi M., Saeb M. R., Fabricating An Electroactive Injectable Hydrogel Based On Pluronic-Chitosan/Aniline-Pentamer Containing Angiogenic Factor For Functional Repair Of The Hippocampus Ischemia Rat Model, Materials Science and Engineering C, 111328, 2020. [22] Patel M., Moon H. J., Jung B. K., Jeong B., Microsphere‐Incorporated Hybrid Thermogel For Neuronal Differentiation Of Tonsil Derived Mesenchymal Stem Cells, Advanced Healthcare Materials, 10, 1565-1574, 2015.
[23] Charlson F. J., Baxter A. J., Dua T., Degenhardt L., Whiteford H. A., Vos T., Excess Mortality From Mental, Neurological And Substance Use Disorders In The Global Burden of Disease Study 2010, Epidemiology and Psychiatric Sciences, 2, 121-140, 2015.
[24] Chaney S. B., Ganesh K., Mathew‐Steiner S., Stromberg P., Roy S., Sen C. K., Wozniak D. J., Histopathological Comparisons Of Staphylococcus Aureus And Pseudomonas Aeruginosa Experimental Infected Porcine Burn Wounds, Wound Repair and Regeneration, 3, 541-549, 2017.
[25] Rezaei F., Damoogh S., Reis R. L., Kundu S. C., Mottaghitalab F., Farokhi M., Dual Drug Delivery System Based on pH-Sensitive Silk Fibroin/Alginate Nanoparticles Entrapped In PNIPAM Hydrogel For Treating Severe Infected Burn Wound, Biofabrication, 1, 015005, 2020.
[26] Dang L. H., Nguyen T. H., Tran H. L. B., Doan V. N., Tran N. Q., Injectable Nano Curcumin-Formulated Chitosan-g-Pluronic Hydrogel Exhibiting A Great Potential For Burn Treatment, Journal of Healthcare Engineering, 2018.
[27]. Huynh C. T, Nguyen M. K, Lee D. S., Injectable Block Copolymer Hydrogels: Achievements And Future Challenges For Biomedical Applications, Macromolecules, 17, 6629-6636, 2011.