رهایش کنترل شده موضعی دارو با استفاده از کاشتنی های پلیمری
محورهای موضوعی :
1 - فناوری های نوین
کلید واژه: دارورسانی موضعی, ابزارهای کاشتنی, حامل های تجزیه پذیر, حامل های تجزیه ناپذیر, رهایش هوشمند,
چکیده مقاله :
مصرف دارو به روش متداول آن اغلب حساسیت زا بوده و باعث ایجاد تراکم در بافت سالم و نیازمند مراجعه مکرر و موجب بروز مشکلات دیگر است. از این رو محققان روش های مختلفی را برای کاهش عوارض و مشکلات ارائه دادهاند. یکی از این روش ها دارورسانی موضعی با استفاده از حامل های کاشتنی در محل مورد نظر است. به طور مثال در درمان سرطان بعد از عمل جراحی به دلیل ایجاد عفونت، جلوگیری از عود تومور و داروهای دیگر، لازم است در محل جراحی رهايش داروهایی انجام شود؛ اما این رهاسازی دارو تحت عوامل مختلفی با کنترل از خارج بدن یا تغییر فاکتورهای داخل بدن انجام می شود که هرکدام به نوبه خود دارای معایب و مزایایی هستند. در رهايش کنترل شده موضعی دارو، برای ساخت حامل ها می توان از پليمرهای تجزیه پذیر و تجزیه ناپذیر متناسب با نوع بیماری و محل کاشت استفاده کرد.
-
1. Patra J.K., Das G., Fraceto L.F., Campos E.V., del Pilar Rodriguez-Torres M., Acosta-Torres LS., Diaz-Torres LA., Grillo R., Swamy MK., Sharma S., Habtemariam S., Nano Based Drug Delivery Systems: Recent Developments and Future Prospects, campos EVR, 16, 1-33, 2018.
2. Xie X., Zhang Y., Li F., Lv T., Li Z., Chen H., Jia L., Gao Y., Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery., Current Cancer Drug Targets, 19, 257-276, 2019.
3. Pattni B.S., Chupin V.V., Torchilin V.P., New Developments in Liposomal Drug Delivery., Chem. Rev., 115, 10938–10966, 2015.
4. Abu-Thabit N.Y., Makhlouf A.S., Historical Development of Drug Delivery Systems: From Conventional Macroscale to Controlled, Targeted, and Responsive Nanoscale Systems., Woodhead Publishing, 1, 3-41, 2018.
5. Weinberg B.D., Blanco E., Gao J., Polymer Implants for Intratumoral Drug Delivery and Cancer Therapy, Journal of pharmaceutical sciences, 97, 1681–1702, 2008.
6. Jia X., He J., Shen L., Chen J., Wei Z., Qin X., Niu D., Li Y., Shi J., Gradient Redox-Responsive and Two-Stage Rocket-Mimetic Drug Delivery System for Improved Tumor Accumulation and Safe Chemotherapy, Nano Lett., 19, 8690–8700, 2019.
7. Yin Q., Shen J., Zhang Z., Yu H., Li Y., Reversal of Multidrug Resistance by Stimuli-Responsive Drug Delivery Systems for Therapy of Tumor, Adv. Drug Deliv. Rev., 65, 1699–1715, 2013.
8. Shahriari M., Zahiri M., Abnous K., Taghdisi SM., Ramezani M., Alibolandi M., , Enzyme Responsive Drug Delivery Systems in Cancer Treatment, J. Control. Release, 308, 172–189, 2019.
9. Zhu Y.J., Chen F., pH-Responsive Drug-Delivery Systems, Chem. - An Asian J., 10, 284–305, 2015.
10. Ding Y., Liu J., Li X., Xu L., Li C., Ma L., Liu J., Ma R., An Y., Huang F., Liu Y., Jianfeng L., Rational Design of Drug Delivery Systems for Potential Programmable Drug Release and Improved Therapeutic Effect, Mater. Chem. Front., 3, 1159–1167, 2019.
11. Staruch R., Chopra R., Hynynen K., Localised Drug Release Using MRI-Controlled Focused Ultrasound Hyperthermia, 27, 156–171, 2011.
12. Zhao Y.Z., Du LN., Lu C.T., Jin Y.G., Ge S.P., Potential and Problems in Ultrasound-Responsive Drug Delivery Systems, Int. J. Nanomedicine, 8, 1621–1633, 2013.
13. Duan L., Yang L., Jin J., Yang F., Liu D., Hu K., Wang Q., Yue Y., Gu N., Theranostics Micro / Nano-Bubble-Assisted Ultrasound to Enhance the EPR Effect and Potential Theranostic Applications, 10, 462-483, 2020.
14. Lin A., Truong B., Patel S., Kaushik N., Choi EH., Fridman G., Fridman A., Miller V., Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in a549 Lung Carcinoma Cells Through Intracellular Oxidative Stress, Int. J. Mol. Sci., 18, 18-23, 2017.
15. van den Bijgaart R.J., Eikelenboom D.C., Hoogenboom M., Fütterer J.J., den Brok M.H, Adema G.J., Thermal and Mechanical High ‑ Intensity Focused Ultrasound : Perspectives on Tumor Ablation , Immune Effects and Combination Strategies, Cancer Immunol. Immunother., 66, 247–258, 2017.
16. Indermun S., Govender M., Kumar P., Choonara Y.E., Pillay V., Stimuli-Responsive Polymers as Smart DrugDelivery Dystems: Classifications Based on Carrier Type and Triggered-Release Mechanism. Elsevier Ltd., 1, 43-58, 2018.
17. Pedacchia A., Adrover A., Swelling Kinetics of HPMC Tablets, Chemical Engineering Communications, 202, 37–41, 2014.
18. Das P., Singh K.K., Dutta S., Insight into Emerging Applications of Forward Osmosis Systems, J. Ind. Eng. Chem., 72, 1–17, 2019.
19. Rabin C.R., Siegel S.J., Delivery Systems and Dosing for Antipsychotics., Current Antipsychotics. Springer, Berlin, Heidelberg, 267-298, 2012.
20. Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C., Analysis of Nanoparticle Delivery to Tumours, Nat. Rev. Mater., 1, 16014-16020, 2016.
21. Talebian S., Foroughi J., Wade S.J., Vine K.L., Dolatshahi‐Pirouz A., Mehrali M., Conde J., Wallace G.G., Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook, Adv. Mater., 30, 1–31, 2018.
22. Jacob J., Haponiuk J.T., Thomas S., Gopi S., Biopolymer based Nanomaterials in Drug Delivery Systems: A review, Mater. Today Chem., 9, 43–55, 2018.
23. Sepantafar M., Maheronnaghsh R., Mohammadi H., Radmanesh F., Hasani-Sadrabadi M.M., Ebrahimi M., Baharvand H., Engineered Hydrogels in Cancer Therapy and Diagnosis, Trends Biotechnol., 35, 11, 1074–1087, 2017.
24. Bahram M., Mohseni N., Moghtader M., An Introduction to Hydrogels and Some Recent Applications, IntechOpen, 2016.
25. Li J., de Ávila B.E., Gao W., Zhang L., Wang J., Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification,” Sci. Robot., 2, 1–10, 2017.
26. Sutradhar K.B., Sumi C.D., Implantable Microchip: The Futuristic Controlled Drug Delivery System, Drug Deliv., 23, 1–11, 2016.
27. Pan C., Zhou Z., Yu X., Coatings as the Useful Drug Delivery System for the Prevention of Implant-Related Infections, J. Orthop. Surg. Res., 13, 1–11, 2018.
28. Damodaran V.B., Murthy N.S., Bio-Inspired Strategies for Designing Antifouling Biomaterials, Biomater. Res., 20, 1–11, 2016.
29. Rong F., Tang Y., Wang T., Feng T., Song J., Li P., Huang W., Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A review, Antioxidants, 8, 2019.
30. Hasan S., Thomas N., Thierry B., Prestidge C.A., Biodegradable Nitric Oxide Precursor-Loaded Micro- and Nanoparticles for the Treatment of Staphylococcus Aureus Biofilms, J. Mater. Chem. B, 5, 1005–1014, 2017.