متاپلیتهای گرمیچای، شمال غرب ایران: شیمی سنگ کل، زادگاه رسوبی و شرایط دگرگونی
محورهای موضوعی :امیر محامد 1 , محسن موءید 2 , منیر مجرد 3
1 - دانشکده علوم طبیعی، دانشگاه تبریز
2 - دانشکده علوم طبیعی، دانشگاه تبریز
3 - دانشکده علوم، دانشگاه ارومیه
کلید واژه: پتروفابریک, زادگاه رسوبی, ژئوشیمی, گرمیچای, متاپلیت ,
چکیده مقاله :
بهمنظور بررسی زادگاه رسوبی و شرایط دگرگونی متاپلیتهای گرمیچای واقع در شمال شهرستان میانه (شمال غرب ایران) شیمی سنگ کل این مجموعه مورد بررسی قرار گرفته است. بررسیهای پتروفابریک حاکی از شکلگیری همزمان با تکتونیک پورفیروبلاستهای کردیریت (دگرگونی ناحیهای) در این سنگها است. همچنین ساختارهای برشی C' ویژگی بارز بافتی میباشد. دو فاز دگرگونی ناحیهای (RMP1 و RMP2)، یک فاز دگرگونی مجاورتی (CM) و دو فاز دگرشکلی (D1 و D2) شناسایی شدهاند. ژئوشیمی عناصر اصلی حاکی از سنگ مادر شیلی و گریوکی برای متاپلیتهای است. بر اساس عناصر اصلی، واسطه و کمیاب (K2O، TiO2، Zr، Ni و Ti) سنگ آذرین مولد این رسوبات دارای سرشت آندزیتی و داسیتی / ریوداسیتی بوده است. درجه دگرسانی شیمیایی (CIA و CIW) سنگ آذرین اولیه متوسط بوده است. همچنین برمبنای اکسید عناصر اصلی محیط تکتونیکی تشکیل رسوب، حاشیه فعال قارهای شناسایی شده است. متاپلیتهای گرمیچای در مقایسه با PAAS و UCC غنی از Cs، La و Ce و تهی از Sr، Nb و Ta میباشند. نمونههای معرف در نمودارهای سازگاری در داخل مثلثهای پاراژنتیک قرار میگیرند که حاکی از تعادلی بودن آنها است. بر اساس مقاطع ترکیبی استاندارد برای متاپلیتهای بازه دمایی و فشاری تشکیل درجه بالاترین پاراژنز به ترتیب 535 تا 635 درجه سانتیگراد و یک تا سه کیلو بار بوده است.
The whole rock chemistry of the Garmichay metapelites located in the north of Miyaneh, NW Iran, is investigated to reveal the provenance and metamorphic conditions of the rocks. Petrofabric observations have revealed the syn-tectonic nature of regional metamorphic cordierite porphyroblasts in the metapelites. C' shear band structure is another feature that is observed in the rocks. Two regional metamorphic phases (RMP1, RMP2), one contact metamorphic phase (CMP) and two deformation (D1, D2) phases are identified. The major oxide geochemistry implies two sedimentary shale and greywacke parent rocks. Based on major, rare earth and trace elements (Ti, Ni, TiO2, Zr and K2O) the igneous source rock has been an andesite to dacite/rhyodacite. The CIA (chemical index of alteration) and CIW (chemical index of weathering) parameters imply a medium degree of alteration in the igneous source area. The Garmichay metapelites, in comparison with the PAAS and UCC, are enriched in Cs, La and Ce and depleted in Sr, Nb and Ta. The representative samples lie inside the paragenetic triangles of the compatibility diagrams that imply their thermodynamically stable conditions. Finally, based on the standard pseudosections, the maximum temperature and pressure range has been determined as 535-635 °C and 1-3 kb, respectively.
بهروزی، ا.، امینی آذر، ر.، عزتیان، ف.، امامی، م.، داوری، م.، هادوی، ف. و بغدادی، ا.، 1371. نقشه زمینشناسی سراب (1:10000). سازمان زمینشناسی ایران.
علوی تهرانی، ن.، لطفی م.، بوردت، پ.، سبزهای، م.، بهروزی، ا.، حقی پور، ا. و عمیدی، م.، 1357. نفشه زمینشناسی میانه (1:250000). سازمان زمین شناسی ایران.
محامد، ا.، مؤید، م. و مجرد، م.، 1399. گرانیتهای تیپ S منطقه گرمیچای (شمالغرب ایران): شیمی سنگ کل، جایگاه زمین ساختی و ساز و کار تشکیل. مجله پترولوژی، 41، 53-72.
Ague, J. J., 1991. Evidence for major mass transfer and volume strain during regional metamorphism of Pelites. Geology, 19, 855-858.
Bertoldi, C., Proyer, A., Schonberg, D. G., Behrens, H. and Dachs, E., 2004. Comprehensive chemical analyses of naturalcordierites: implications for exchange Mechanisms. Lithos, 78, 389-409.
Bierlein, F. P., 1995. Rare-earth element geochemistry of clastic and chemical metasedimentary rocks associated with hydrothermal sulphide mineralisation in the Olary Block, South Australia. Chemical Geology, 122, 77-98.
Boles, J. R. and Franks, S. G., 1979. Clay diagenesis inWilcox sandstones ofsouthwest Texas, implications of smectite diagenesis on sandstonecementation. Jornal of Sedimentary Petrology, 49, 55–70.
Bucher, K. and Frey, M., 1994. Petrogenesis of Metamorphic Rocks. Springer Verlag, 318.
Bucher, K. and Grapes, R., 2011. Petrogenesis of Metamorphic Rocks. Springer-Verlag, 428.
Condie, K. C., 1993. Chemical composition and evolution of theupper continental crust: contrasting results from surfacesamples and shales. Chemical Geology, 104, 1–37.
Condie, K. C., 1997. Plate Tectonics and Crustal Evolution.4th edition.Butterworth-Heinemann, 282.
Cullers, R.L., Bock, B. and Guidotti, C., 1997. Elementaldistributions and neodymium isotopic compositions ofSilurian metasediments, western Maine, USA: Redistriburionof the rare earth elements. Geochima et Cosmochima Acta, 61, 1847–1861.
Eftekharnejad, J., 1975. Brief history and structural development of Azarbaijan. Geological Survey of Iran. Internal Report, 8.
Elias, E. M. and Al-Jubory, Z. J., 2013. Provenance and tectonic setting of the metapelites deposits in the Bulfat Complex, NE-Iraq. Arab Journal of Geosciences, 7,9, 3589-3598.
Fedo, C. M., Nesbitt, H. W. and Young, G. M., 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with impilications for paleoweathering conditions and provenance. Geology, 23, 921-924.
Feng, R. and Kerrich, R., 1990. Geochemistry of fine-grained clastic sediments in theArchean Abitibi greenstone belt, Canada: implications for provenance andtectonic setting. Geochimica et Cosmochima Acta, 54, 1061–1081.
Floyd, P. A., Winchester, J. A. and Park, R. G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Lock Marie Group of Gairlock, Scottland. Precambrian Research, 45, 203-214.
Garcia, D., Fonteilles, M. and Moutte, J., 1994. Sedimentary fractionations between Al,Ti, and Zr and the genesis of strongly peraluminous granites. Journal of Geology, 102, 411-422.
Girty, G. H., Ridge, D. L., Knaack, C., Johnson, D. and Riyami R. K. A., 1996. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66, 107-118.
Hallberg, J. A., 1984. A geochemical aid to igneous rock identification in deply weathered terrain. Journal of Geology Exploration, 20, 1-8.
Hawkesworth, C., Cawood, P. A. and Dhuime, B., 2019. Rates of generation and growth of the continental crust. Geoscience Frontiers, 10, 165-173.
Henry, D. J. and Guidotti, C. V., 2002. Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls and petrologic applications. American Mineralogist, 87, 375-382.
Henry, D., Guidotti, C. and Thomson, J., 2005. The Ti-SaturationSurface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanism. American Mineralogist, 90, 316–328.
Herron, M. M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820-829.
Holland, T. J. B. and Powell, R., 1998. An internally consistent thermodynamic dataset for phase of petrological interest. Journal of Metamorphic Geology, 16, 309-343.
Ji, S., Saruwatari, K., Mainprice, D., Wirth, R., Xu, Z. and Xia, B., 2003. Microstructures, petrofabrics and seismic properties of ultra high-pressure eclogites from Sulu region, China: implications for rheology of subducted continental crust and origin of mantle reflections. Tectonophysics, 370, 1-4, 49-76.
Johnson, T. M., Brown, M. and Solar G. A., 2003. Low–pressure subsolidus and suprasolidus phase equilibria in the MnNCKFMASHsystem: Constraints on conditions of regional metamorphism in western Maine, Northern Appalachians, 88, 624-638.
Kretz, R., 1983. Symbols for rock-forming minerals, American Mineralogist, 68, 277–279.
Long, X., Sun, M., Yuan, C., Xiao, W. and Cai, K., 2008. Early Paleozoic sedimentary record of the Chinese ltai; Implications for its tectonic evolution. Sedimentary Geology, 208, 88-100.
Mahar, E. M., Baker, J. M., Powell, R., Holland, T. J. B. and Howell, N., 1997. The effect of Mn on mineral stability in metapelites. Journal of Metamorphic Geology, 15, 223-238.
Maynard, J. B., Valloni, R. and Yu, H., 1982. Composition of modern deep sea sands from arc-related basin. Geology Society of London. Special Publication, 10, 551-561.
Mason, B. and Moore, C. B., 1982. Principle of Geochemistry. John Willey and Sons.Fourth Ed, 352.
McLennan, S. M. and Taylor, S. R., 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology, 99, 1-21.
Meres, S., 2005. Major, trace element and REE geochemistry of metamorphosed sedimentaryrocks from the Malé Karpaty Mts. (Western Carpathians, Slovak Republic): Implications for sedimentary and metamorphic processes. Slovak Geological Magazine, 11, 2-3, 107-122.
Middelburg, J. J., Van Der Weijden, C. H. and Woittiez, J. R. W., 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68, 253-273.
Nadimi, A., 2007, Evolution of the Central Iranian basement. Gondwana Research, 12, 324-333.
Nesbitt, H. W. and Young, G. M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 199, 715–717
Nesbitt, H. W. and Young, G. M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 8, 1523-1534.
Nesbitt, H., Young, G. and Bosman, S., 2009. Major and trace element geochemistry and genesis of supracrustal rocks of the North Spirit Lake Greenstone belt, NW Ontario, Canada. Precambrian Research, 174, 16–34.
Passchier, C. W., 1994. Mixing in flow perturbations: a model for developmentof mantled porphyroclasts in mylonites, Journal of Structural Geology, 16, 733-736.
Passchier, C. W. and Trouw, R. A. J., 2005, Microtectonics. 2nd edition, Springer, 289.
Pattison, D. R. M., 1992. Stability of andalusite and sillimanite and the Al2SiO5 triple point: Constraints from the Ballachulish aureole, Scottland. Journal of Geology, 100, 423-446.
Pattison, D. R. M., 2006. The fate of graphite in prograde metamorphism of pelites: An example from the Ballachulish aureole, Scotland. Lithos, 88, 85-99.
Piazolo, S. and Passchier, C. W., 2002. Controls on lineation development in low to medium grade shear zones: a study from the Cap de Creus peninsula, NW Spain. Journal of Structural Geology, 24, 25-44.
Potter, P. E., Maynard, J. B. and Depetris, P. J., 2005. Mud and Mudstones: Introduction and Overview. Heidelberg, Springer-Verlag, 308.
Puchelt, H., 1972. Barium. Handbook of Geochemistry (Wedepohl, K. H. et al., eds.), 56B1–56O2, Springer, Berlin, 458.
Puelles, P., Abalos, B., Gil Ibarguchi, J. I. and Fernandez-Armas, S., 2018. Petrofabric of forsterite marbles and related rocks from a low-pressure metamorphic terrain (Almadén de la Plata massif, Ossa-Morena Zone, SW Spain) and its kinematic interpretation. Journal of Structural Geology, 117, 58-80.
Ramezani, J. and Tucker, R. D., 2003. The Saghand Region,Central Iran: U-Pb geochronology, petrogenesis and implicationsfor Gondwana Tectonics. American Journal of Science, 303, 622–665.
Roser, B. P. and Korsch, R. J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139.
Rollinson, H., 1993, Using geochemical data: evolution, presentation, interpretation. Longman Scientific and Technical, London, 384.
Saki, A., 2010. Proto-Tethyan remnants in northwest Iran: geochemistryof the gneisses and metapelitic rocks. GondwanaResearch, 17, (4), 704–714.
Shahzeidi, M., Moayyed, M., Murata, M., Yui, T., Arai, Sh., Chene, F., Pirnia, T. and Ahmadian, J., 2016. Late Ediacaran crustal thickening in Iran: Geochemical and isotopic constraints from the ~550 Ma Mishu granitoids (northwest Iran) International Geology Review, 59, 793-811.
Shaw, D. M., 1956. Geochemistry of pelitic rocks: Part III.Major elements and general geochemistry. Geology Society of American Bulletin, 67, 919-934.
Spear, F. S., 1995. Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America, Monographs, 799.
Stocklin, J., 1968a. Structural history and tectonics of Iran: a review. American Association of Petroleum Geological Bulletin, 52, 7, 1229–1258.
Symmesm G. H. and Ferry, J. M., 1992. The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism. Journal of Metamorphic Geology, 10, 221-238.
Taylor, S. R. and McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312.
Toulkeridis, T., Clauer, N., Kroner, A., Reimer, T. and Todt, W., 1999. Characterization, provenance, and tectonic setting of Fig Tree graywackes from the Archean Barberton Greenstone Belt, South Africa. Sedimentary Geology, 124, 113-129.
Vergara, M., Levi, B., Nystrom, J. O. and Cancino, A., 1995. Jurassic and Early Cretaceous island arc volcanism, extension, and subsidence in the Coat Range of central Chile. Geology Society of American Bulletin, 107, 1427-1440.
Wei, C. J., Powell, R. and Clarke, G. L., 2004. Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. Journal of Metamorphic Geology, 22, 495-508.
Werner, C. D., 1987. Saxonian granulites-igneous or lithoigneous: a contribution to the geochemical diagnosis of the original rock in high metamorphic complexes. Zfl Mitteilungen, 13, 221-250.
Whitney, D. L. and Evans, B. W., 2010. Abbreviations for namesof rock-forming minerals. American Mineralogist, 95, 185–187.
Winchester, J. A. and Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.
Young, G. and Nesbitt, H., 1998. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary research, 68, 448-455.