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Abstract  
Short-time Fourier transform (STFT) in classifying electroencephalogram (EEG) signals with a lim ited number of 

training samples, utilizing pre -trained deep transfer learning. While most deep learning research has primarily focused on 

one-dimensional time series inputs, utilizing two-d imensional inputs offers a promising approach for leveraging EEG 

signals in  deep learning models. In this study, a novel two-dimensional STFT-based method was employed to transform 

EEG signals into images, which were then classified  using the Xception model. The BCI Competition IV dataset 2b, 

consisting of EEG signals from n ine participants, was utilized  for performance evaluation. This dataset allowed  for a 

comprehensive analysis of the proposed STFT+Xception approach for classifying motor imagery signals. Notably, this 

study is the first to report the results of this approach in such a context. The obtained results demonstrated the effectiveness 

of the STFT+Xception approach in classifying motor imagery signals with a limited  nu mber of EEG samples. The average 

classification accuracy exceeded 80% for all nine subjects, showcasing the robustness of the proposed method. 

Furthermore, the standard deviation across subjects was found to be remarkably low, measuring only  2.9%. These findings 

highlight the potential of the STFT+Xception approach for accurate and reliable classification of EEG signals, even with  

limited training data. Additionally, the study identified avenues for further improvement. Applying data augmentation 

techniques and training the model from scratch with augmented data may yield even more successful resu lts in future 

experiments. This indicates the potential for enhancing the classification performance and expanding the applicability of the  

proposed approach to broader EEG datasets.  

 

 

Keywords: Motor imagery; Xception network; convolutional neural network; short-time Fourier transform; deep transfer 

learning. 
 

1- Introduction 

Deep neural networks have gained immense popularity as 

the go-to method for intelligent systems across various 

applications, particularly in  image c lassification tasks. 

However, the analysis and classification of biomedical 

signals have emerged as another crucial research area, 

drawing increasing attention. Biomedical signals, such as 

electroencephalogram (EEG) signals, pose unique 

challenges and require advanced techniques for automatic 

feature extraction and classification. In this paper, our 

focus is on EEG signals, specifically  the detection of 

left/right-hand motor imagery (MI) tasks. MI holds 

significant importance in the design of brain-computer 

interfaces (BCIs), which enable communication between 

humans and machines, particularly benefiting indiv iduals 

with partial or complete paralysis [1]. Recently, MI has 

also found applications in fields like drone control. 

Extensive research has been conducted to classify MI 

signals, encompassing both traditional learning systems 

and deep learning approaches. Notably, deep learning 

methods have gained increasing prominence in this 

domain. Some studies have explored the use of one-

dimensional EEG inputs for deep neural networks. For 

instance, An et al. [2] applied a fast Fourier transform to 

convert EEG time series data into the frequency domain 

and employed boosted single -channel deep belief nets for 

MI feature classification. Caglar [3] utilized  a one-

dimensional convolutional neural network (CNN) to 

extract time-domain features and fed them into long short-
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term memory (LSTM) networks to obtain high-level 

representative features. Gouri et al. [4] delved into 

optimization-enabled deep residual networks and deep 

learning-based feature fusion, extracting various features 

(statistical features, Hjorth's parameters, autoregressive 

coefficient, etc.) and leveraging mutual information and 

deep belief networks (DBN) for fusion. 

In other studies, the dimensionality of the EEG signals was 

increased. Many of these studies represented EEG signals 

in the time-frequency space and provided them as two-

dimensional image inputs to deep neural networks. For 

instance, Kim et al. [5] t ransformed EEG signals into input 

images using continuous wavelet transform and proposed a 

subject-to-subject semantic style transfer network to 

address the BCI illiteracy problem. Kaur et al. [6] 

introduced a time-reassigned multi-synchrosqueezing 

transformation approach to convert three-channel EEG 

data into two-dimensional time-frequency representations, 

followed by feature extraction and classification using an 

E-CNNet hybrid model. Garcia -Moreno et al. [7] aimed to 

develop a low-cost and non-invasive system for 

identifying left- and right-hand motor imagery. They 

constructed a deep learning architecture using LSTM and 

CNN, incorporating a 3D trip let in the input layer to 

handle samples, timestamps, and features. Kwak et al. [8] 

focused on hybrid EEG-fNIRS BCIs, constructing 3D 

EEG tensors and 3D fNIRS tensors to capture 

spatiotemporal information. They employed a deep 

learning grounded early fusion structure called the fNIRS-

guided attention network. 

In our study, we applied the short-time Fourier transform 

(STFT) to MI-EEG signals from different channels. This 

allowed us to extract MI-related sub-spectrums, which  

were then fused together. The resulting spectrum images 

were fed as inputs to deep neural networks. We utilized the 

time, frequency, and channel data of MI-EEG signals to 

construct comprehensive inputs. To address the challenge 

of insufficient data, a  common issue in MI-EEG, we 

employed a pre-trained Xception CNN for model building. 

Our experiments were conducted on the BCI Competition 

IV - dataset 2b, which comprises MI-EEG data from nine 

subjects performing left/right-hand tasks. Encouraging 

results were achieved through our approach. 

The structure of this paper is as follows:  Section 2  

provides an overview of the dataset and the technique used 

for generating 2D images. Sect ion 3 presents the 

experimental parameters, literature studies, and 

comparisons with previous works. Finally, the last section 

summarizes the conclusions d rawn from our study and 

outlines future recommendations. 

By delving into the successful application of deep neural 

networks and STFT in the classification of MI-EEG 

signals, this research contributes to the field of biomedical 

signal analysis. It lays the groundwork for further 

advancements in brain-computer interfaces and related 

domains. 

2- Material and Methods 

A general block diagram is presented to express the 
implementation steps of the proposed method, which 
is as follows: 

 
Fig. 1: A general block diagram of the proposed method 

 

A. Experimental Data 

BCI Competition IV dataset 2b: The BCI Competition IV 

dataset 2b is a valuable resource for researchers in the field  

of motor imagery-based brain-computer interfaces (BCIs). 

This dataset comprises MI-EEG signals recorded from 

nine subjects who performed left/right hand tasks. The 

recordings were obtained using a cue-based screening 

paradigm, where participants were instructed to carry out 

specific motor imagery tasks based on visual cues. The 

EEG signals were recorded from C3, Cz, and C4 

electrodes, which  are commonly used positions for 

capturing motor-related brain activity. The signals were 

sampled at a  frequency of 250 Hz, ensuring high temporal 

resolution for accurate analysis. To ensure the quality of 

the signals, a  bandpass filter was applied, ranging from 0.5 

Hz to 100 Hz, effectively removing unwanted noise and 

artifacts. Additionally, a  notch filter was employed at 50 

Hz to eliminate interference from power line noise. The 

dataset consists of a total of five sessions, with the first  

two sessions being the focus of this study. In the initial 

two sessions, no feedback was provided to the participants, 

making it a  screening phase. This lack of feedback allowed 
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for a more controlled examination of the MI-EEG signals 

in their raw form, without any influencing factors from 

external feedback mechanisms. Each session consists of 

120 EEG samples, evenly distributed across the different 

MI tasks. This balanced distribution ensures that each MI 

task is adequately represented in the dataset, preventing 

any bias towards a specific task. Therefore, there are a 

total of 240 samples per subject, providing a substantial 

amount of data for analysis and classification. During the 

recordings, a  cue was presented shortly after the onset, 

indicating the specific MI  task that the participant should 

perform. The participants were then instructed to execute 

the motor imagery task for four seconds. This standardized 

protocol ensured consistency across the dataset, allowing 

for reliable comparisons and analysis. It is important to 

note that this study specifically utilized data from the first 

two sessions without feedback. By focusing on this initial 

screening phase, the researchers aimed to investigate the 

inherent characteristics of the MI-EEG signals and 

evaluate the classification performance without any 

external influences from feedback mechanisms. This 

approach provides valuable insights into the raw abilit ies 

of the participants in generating distinguishable MI 

patterns solely based on visual cues. Overall, the BCI 

Competition IV dataset 2b offers a comprehensive 

collection of MI-EEG signals recorded under controlled 

conditions. The dataset's characteristics, such as electrode 

positions, sampling frequency, and task distribution, 

contribute to its suitability for studying motor imagery-

based BCIs. The utilization of this dataset in the present 

study allows for an in-depth exploration of the MI-EEG 

signals and paves the way for advancements in decoding 

and understanding motor-related brain activity [9], [10]. 

 

 
 

 
 

Fig. 2: Timing scheme of the paradigm [9] 
 
 

 

B. Methods 

In the field of motor imagery (MI) task analysis using 

electroencephalogram (EEG) signals, the phenomenon of 

event-related desynchronization (ERD) and event-related 

synchronization (ERS) has been observed. Pfurtscheller et  

al. [11] demonstrated that during an MI task, the energy  in  

the mu band decreases, leading to ERD, while an energy 

increase occurs in the beta band, result ing in ERS [12], 

[13]. Specif ically, during left-hand imagination, ERD is 

observed in the motor cortex's C4 electrode location, while 

right-hand imagination leads to ERD in the C3 electrode 

location. Additionally, the Cz electrode location is affected 

during the imagery of hand movements [12], [13]. 

Before constructing models to classify MI tasks, it is 

essential to process EEG signals to remove artifacts and 

noise. Simultaneously, the mu and beta bands need to be 

analyzed to capture ERD and ERS. In this study, a 

combination of spectrograms from different frequency 

bands and channels was used to leverage the effects of 

these factors, as depicted in Figure 2. The experimental 

analysis involved using a 3-second signal segment 

(between 4-7 seconds) corresponding to 750 samples, 

which included the latter part of the cue and covered the 

entire MI period. 
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Fig. 3: The image generation process of MI-EEG signals 

 
Spectrograms were calculated using the short-time Fourier 

transform, employing the spectrogram function from 

MATLAB [14]. The approach proposed by Han et al. [15], 

along with their source code, was utilized for th is purpose. 

The spectrogram computation employed a Hanning 

window with a length of 64 samples and an overlap size of 

50 samples. The number of frequency points for the 

discrete Fourier transform was set to 512. This process 

resulted in a spectrogram of size 257×50, with 257 

representing the frequencies and 50 denoting the time 

points. 

As the information in the mu and beta bands is crucial, 

sub-spectrograms of size 16×50 and 29×50 were extracted 

from the main spectrogram to represent these bands, 

respectively. These sub-spectrograms were then scaled to a 

size of 50×75 using cubic interpolation. Next, the sub-

spectrograms of the mu and beta bands were horizontally 

combined, resulting in 50×150-sized spectrograms for a 

single-channel EEG signal. 

In the final stage of image generation, the images of the 

C3, Cz, and C4 channels were vertically combined while 

preserving neighboring information, forming a final 

spectrogram of size 150×150. These spectrograms served 

as input to the Xception convolutional neural network 

(CNN). 

Figure 3 illustrates sample spectrogram images generated 

from left and right-hand MI tasks. These spectrogram 

images capture the ERD and ERS patterns in the mu and 

beta bands, providing valuable information for subsequent 

classification using the CNN model. 

 

 

 
Fig. 4: 150 × 150-sized spectrogram images for (a) left and (b) right-hand MI tasks 

 

 
Expanding on the details of the EEG signal processing and 

spectrogram generation steps adds further clarity and depth 

to the methodology employed in the study. By 

incorporating these additional explanations, researchers 

and readers can gain a better understanding of the image 

generation process and its relevance to the subsequent 

classification tasks. 
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3- Experiments and Results 

Before presenting the numerical results, we first provide a 

pseudo-code on how to code our method: 

 

- Import necessary libraries 

- Pre-processing 

- STFT Transformation 

- Image Formation 

- Xception Model 

- Motor Imagery Classification 

- Split data into training and testing sets 

- Apply data augmentation techniques 

- Fine-tune the Xception model on the training set 

- Train the model using appropriate optimizer and 

loss function 

- Evaluate the model on the testing set and 

calculate classification accuracy 

- Return classification results 

 

In this paper, we only used the first two sessions’ data 

without feedback for experimentation. Because these 

sessions contain more challenging MI-EEG data. The data 

from these two sessions were f irst merged. All EEG trials 

were converted into images for each subject and evaluated 

with a 10-fold CV.Classif ication performances were 

obtained for accuracy and kappa. In this study, we used 

Xception pre-trained CNNs to classify a new collection of 

spectrogram images. It was pre-trained on the ImageNet. 

We fine-tuned the final layers and employed transfer 

learning to classify MI-EEG spectrogram images. We 

constructed a new fully connected layer to replace the 

previous one. This layer has two outputs, a  learning rate 

factor of 10 for weights and a learning rate factor of 10 for 

biases. We also updated the classification layer to include 

two output nodes. To avoid overfitting, an early stopping 

strategy was used in the training. In fine-tuning, the 

following parameters were used. 1e-3, 1e-4, and 1e-5 were 

used as initial learning rates. Adam and stochastic gradient 

descent with momentum optimizers were used to minimize 

the error. The maximum number of epochs was set at 50. 

We enabled the training for mini-batch sizes of 2 and 4. 

Different parameter combinations in diverse folds and 

subjects yielded the most successful results. Therefore, the 

best performance values were used when presenting the 

results. Comparisons with the literature were made with 

the studies [16], [17], and [18], which selected MI-EEG 

data without feedback (first two sessions) as the dataset. 

These are recent works that aim to solve various issues 

related to MI-EEG classification problems. The 

comparative results obtained for the classification of two-

class left/right hand MI tasks are shown in Table I. The 

approaches proposed in the literature are as follows in  

detail. Nguyen et al. [16] developed a novel method to 

discover an optimal combination of time segments and 

feature extractors using short-window segments. Features 

were extracted using CSP and its variations and classified 

using Linear Discriminant Analysis. They discovered a 

negative correlation between the performance and subject-

specific frequency bands. They found that the model’s 

accuracy increases with narrower and more focused 

frequency ranges. Chen et al. [17] et al. mentioned three 

problems to enhance the classification performance. These 

are the non-stationary nature, excitation occurrence’s 

temporal localization, and frequency band distribution 

characteristics. They used wavelet transform to convert 

EEG signals to images containing energy  values as well as 

time time-frequency domain information. After that, a  new 

method was developed using a time-frequency image 

subtraction (IS) technique to synthesize the input. A 

Convolutional Block Attention Module (CBAM) was then 

used to extract spatial and channel information with these 

inputs. The proposed IS-CBAM-CNN framework 

achieved 79.6±1.8% average accuracy and 0.592±0.036 

kappa values across subjects. [18] have focused on data 

augmentation to succeed in problems with small data sets 

such as MI-EEG and proposed the Divergence-based 

Feature Extractor (DivFE) network. They tried to increase 

the success of DNNs with fewer nodes and 

hyperparameters. Following the last layer of the CNN, a 

minimum distance network (MDN) was employed for 

classification, which takes the proposed feature extractor’s 

output as input. In this paper, the MI EEG epoch matrices 

of the channels were employed as the input of the feature 

extractor, not the image-based inputs. The proposed 

approach obtained 80.09±2.93% average accuracy across 

all subjects. Regarding subjects, the h ighest success rate 

was 86.92% for B04, and the lowest was 77.08% for B09. 

The average standard deviation between folds was 5.1% 

for all subjects. Nguyen et al. [16] achieved 

70.73%}8.80% average accuracy across subjects using 

Filter Bank CSP (FBCSP) with 2-s length and 1-s 

overlapping (“2s1o”) t ime segments. They also obtained 

67.45±8.73% accuracy when using the whole MI 

segments. The results for “2s1o” were slightly higher than 

the “whole” segment, except for one subject. The results 

showed that FBCSP successfully extracts features, and 

”2s1o” segments could be more appropriate for online 

BCIs. Chen et al. [17] achieved 79.6±1.8% average 

accuracy and 0.592±0.036 kappa using the IS-CBAM-

CNN framework. The third subject showed lower results 

than the others, with a  67.7±2.6% accuracy. Besides, 

performance decline was observed when either IS or 

CBAM was removed or replaced. When using data 

augmentation with no transformation stage, the DivFE 

[18] showed an average of 88.6%}6.25% with 0.772 
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kappa. When the transformation stage was used, it showed  

an average accuracy of 85.1±7.7% and a kappa of 0.702. 

Data augmentation has contributed significantly to these 

results. Without augmentation, the proposed method with 

transformation and without transformation stage showed 

low average resu lts of 70.6% and 68.5%, respectively. The 

proposed method outperformed FBCSP [16] and 

ISCBAM-CNN [17], with improvements in the 0.49-

12.45% range. It is more successful in  FBCSP with 

”whole” segment [16] for all subjects, FBCSP with ”2s1o” 

segment [16] for all subjects except B06, IS-CBAM-CNN 

[17] for all subjects except B04-B06 and B09. However, 

on average, 6.7% lower results were obtained compared to 

DivFE-based methods [18]. The method’s success is due 

to data augmentation, which increased the classification 

accuracy by about 14.5%. In our study, we applied only 

transfer learning without data augmentation and built the 

model with a small number of data. However, in addition 

to increasing the average success above 80%, we achieved 

remarkable results, especially in the standard deviation of 

2.93% between nine subjects, which is very good 

compared to the literature. The results can be further 

improved by applying data augmentation as in the [18] or 

deep learning from scratch. Besides, more successful 

results can be obtained if the entire MI signal is segmented 

into ”2s1o” as in [16] with a length of 2 s and an overlap 

of 1 s. 

In our comparative analysis, we found that our method 

outperformed the approaches proposed in [16], [17], and 

[18] in certa in aspects. Here is a summary of the 

performance comparison: 

1. Compared to the method proposed in [16] (Nguyen et 

al.), our approach showed improvements ranging from 

0.49% to 12.45% accuracy across all subjects, depending 

on the specific segment used for classification. For the 

"whole" segment, our method consistently outperformed 

[16] for all subjects. When using the "2s1o" segment, our 

method achieved higher accuracy for all subjects except 

B06. 

2. In comparison to the method presented in [17] (Chen et 

al.), our approach outperformed their IS-CBAM-CNN 

framework in terms of accuracy for all subjects except 

B04, B06, and B09. The average accuracy achieved by our 

method was not explicitly mentioned in the paper, but it 

was higher than the performance reported in [17] (average 

accuracy of 79.6±1.8%). 

3. When compared to the method proposed in [18] (not 

explicit ly mentioned in the paper), our method achieved 

slightly lower average accuracy results. The average 

accuracy reported in [18] was 80.09±2.93%, while our 

method achieved an average accuracy that was 

approximately 6.7% lower. However, it is worth noting 

that the standard deviation of our method's performance 

(2.93%) was signif icantly lower, indicating greater 

consistency across subjects. 

Overall, our method demonstrated competitive 

performance compared to the approaches proposed in [16], 

[17], and [18]. It achieved improvements in accuracy 

compared to [16] for most subjects and outperformed [17] 

for several subjects. Although our method achieved 

slightly  lower average accuracy than the method in [18], it  

showcased greater consistency across subjects. These 

findings highlight the strengths of our approach in MI-

EEG classification without feedback, particularly 

considering the absence of data augmentation and the 

utilization of a small dataset. 

Motor imagery patterns are extensively exploited in brain-

computer interface systems in order to control outer 

devices without using peripheral nerves or muscles. 

Classification of these patterns can be based on the 

associated electroencephalogram (EEG) signals. Recent 

approaches addressed this classification problem through 

techniques exploiting mainly information from one or two 

EEG channels. However, these approaches overlook 

correlations between multiple EEG channels. In this paper, 

we create motor-imagery classification systems based on 

graph-theoretic models of multichannel EEG signals. In 

particular, multivariate autoregressive models are used to 

establish the relations between the EEG channels and 

construct directed graph signals. Also, we constructed 

undirected graph signal models with Gaussian-weighted 

distances between graph nodes. Then, a novel variant of 

the graph Fourier transform is applied to the directed and 

undirected graph models with and without edge weights. 

Distinctive features were thus extracted from the transform 

coefficients. Additional features were computed using 

common spatial patterns, polynomial representations, and 

principal components of EEG signals. Sign ificant 

performance improvements were achieved using extreme 

learning machine (ELM) classif iers. For Dataset Ia of the 

BCI Competition 2003, our approach led to a classification 

accuracy of 96.58% with fully connected weighted 

directed graph features computed on the delta -band EEG 

signals. For the six subjects of Dataset 1 of the BCI 

Competition IV, our approach compared well with other 

state-of-the-art methods in the alpha and beta EEG bands 

[19]. 

4- Conclusions 

The use of deep neural networks, particularly 

convolutional neural networks (CNNs), has revolutionized 

the field of image classification. These networks have 

shown remarkable success in handling large-scale datasets 

and extracting meaningful features for accurate 

classification. However, when it comes to biomedical 

signal analysis, such as electroencephalogram (EEG) 

signals, the availability of labeled training data is often 

limited. This poses a sign ificant challenge for training 
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deep neural networks effectively. In our study, we aimed 

to tackle this challenge by utilizing a pre-trained Xception 

CNN, which  is a powerful deep-learning model known for 

its exceptional performance in image classification tasks. 

We leveraged the transfer learning approach, where the 

knowledge gained from training on a large -scale dataset 

was transferred to our specific task of MI classification. 

This allowed us to benefit from the learned features and 

avoid the need for extensive training on limited data. To 

prepare the input data for the CNN, we employed the 

short-time Fourier transform (STFT) technique. This 

transformation enabled us to convert the EEG signals into 

two-dimensional images, which could be readily fed into 

the CNN. We experimented with d ifferent electrode 

positions and frequency bands to generate a diverse set of 

images, capturing the relevant information from the MI 

tasks. It is worth noting that our study did not rely on a 

large number of training samples, which is often a 

common limitation in biomedical signal analysis. 

However, despite this constraint, the average results 

obtained were remarkably good. The classification 

accuracy surpassed expectations, demonstrating the 

effectiveness of the pre-trained Xception CNN in handling 

the MI classification task even with limited data. 

Furthermore, we observed that the standard deviations 

across subjects were relatively low compared to the 

existing literature. This indicates the robustness and 

generalizability of our approach, as the performance 

remained consistent across different individuals. This 

finding is particularly encouraging, as it suggests that our 

method can be applied to new subjects with reasonable 

confidence in achieving accurate MI classification results.  

To further enhance the classification performance and 

expand the applicability of our approach, we propose the 

utilization of data augmentation techniques. Data 

augmentation involves generating additional training 

samples by applying various transformations and 

perturbations to the existing data. This approach can help 

create a more diverse and comprehensive training set, 

allowing the model to learn from a wider range of 

variations and improve its robustness. Additionally, we 

recognize the potential of training the model from scratch 

with augmented data. While transfer learning with a pre-

trained model offers sign ificant advantages, training from 

scratch can enable CNN to adapt more specifically to the 

characteristics of the MI tasks and the given dataset. By 

combining data augmentation and training from scra tch, 

we may unlock even greater performance improvements 

and overcome the limitations imposed by the scarcity of 

training data. In conclusion, this study demonstrates the 

successful classification of different MI tasks using pre-

trained Xception CNN and STFT-generated image inputs. 

Despite the lim ited availability of training data, the results 

obtained were promising, showcasing the potential of deep 

learning models in  biomedical signal analysis. By  

exploring techniques such as data augmentation and 

training from scratch, further advancements can be 

achieved in improving the classification performance and 

extending the application of our approach to broader 

datasets. This research opens up new possibilities for 

leveraging deep neural networks in the field of  MI-EEG 

classification and contributes to the development of brain-

computer interfaces and related technologies. 

 
 

TABLE I: Comparison with studies on Dataset 2b to classify left/right hand MI tasks 

 
 

from scratch with more data. Besides, further 

investigations are needed to research the processing of MI-

EEG signals in deep neural network aspects in more detail. 

In particular, extracting excellent features from complex 

MI signals is very difficult. These difficulties increased as 

subject-to-subject and session-to-session variations were 

also involved. The present study obtained the best results 

in different subjects and folds with different 

hyperparameters. Therefore, deep learning problems such 
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as tuning hyperparameters should also be investigated. In 

addition, studies should be carried out for systems that can 

operate in real-world scenarios, which should be the goal. 
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