بررسی رفتار زمینشیمیایی عناصر اصلی و کمیاب خاکی در گارنتهای موجود در سنگهای دگرگونی منطقه بروجرد (پهنه سنندج- سیرجان)
محورهای موضوعی :فرشته سجادی 1 , سمیه رحمانی جوانمرد 2 , نسیم شمس الدینی 3 , زهرا طهماسبی 4 , حسین هاشمی 5 , زینگ دینگ 6 , احمد احمدی خلجی 7
1 - دانشكده زمينشناسي، پرديس علوم، دانشگاه تهران
2 - دانشگاه لرستان، خرم¬آباد
3 - دانشگاه ارومیه
4 - دانشگاه لرستان
5 -
6 - آکادمی علوم چین
7 - دانشگاه لرستان، خرم¬آباد
کلید واژه: انتشار بروجرد پهنه سنندج- سیرجان سنگهای دگرگونی شیمی کانی عناصر کمیاب خاکی گارنت,
چکیده مقاله :
در شرق و جنوب شرق بروجرد واحدهای دگرگونی میکاگارنتشیست و هورنفلس برونزد دارند. این سنگها شامل کانیهای کوارتز، فلدسپار پتاسیمدار، پلاژیوکلاز، گارنت (آلماندین- اسپسارتین)، کلریت، کردیریت، آندالوزیت، سیلیمانیت، بیوتیت و مسکوویت و به مقدار کمتری آپاتیت، اکسیدهای آهن (ایلمنیت و مگنتیت) و زیرکن هستند. با توجه به نتایج تجزیه شیمیایی سنگ کل، سنگ مادر سنگهای مورد بررسی، سنگهای پلیتی بوده است. بر پایه اکسیدهای عناصر اصلی و عناصر با قدرت میدانی بالا، محیط رسوبی تشکیل سنگ مولد متاپلیتهای بروجرد، حاشیه فعال قارهای بوده است. شیمی پورفیروبلاستهای گارنتهای موجود در برخی هورنفلسها از مرکز به حاشیه بیانگر همگن بودن نسبی آنها نسبت به عناصر اصلی، کمیاب و کمیاب خاکی است که این مسئله به پدیده انتشار در درجات بالای دگرگونی (ºC 600<) نسبت داده شده است. بررسی الگوی منطقهبندی عناصر اصلی گارنتهای موجود در شیستها و برخی دیگر از هورنفلسها بیانگر منطقهبندی ترکیبی معکوس با افزایش Mn و کاهش Fe و Mg از مرکز به حاشیه است. فرایند بازجذب منگنز در طی رشد گارنت، موجب افزایش Mn در حاشیه این گارنتها شده است. حضور کلریت در حاشیه پورفیروبلاستهای گارنت موجود در این شیستها بهوضوح نشان میدهد که فرایند بازجذب منگنز ممکن است در افزایش منگنز بهسوی حاشیه نقش مهمی داشته باشد. روند تغییرات Y و HREE در گارنت درون شیستها از مرکز بهسوی حاشیه کاهشی است. رشد گارنت در یک سیستم بسته (تفریق رایلی عناصر سازگار) بهعنوان یک فرایند احتمالی میتواند موجب افزایش محتواي منگنز و همچنین موجب کاهش فراوانی عناصر Y و HREE از مرکز به حاشیه در گارنت موجود در شیستها شده باشد. الگوی تغییرات عناصر کمیاب و کمیاب خاکی در گارنت موجود در برخی از هورنفلسها نسبتاً همگن بوده و روند خاصی را از مرکز به حاشیه نشان نمیدهند. عدم مشاهده منطقهبندي مشخص این عناصر در گارنت درون این هورنفلسها احتمالاً ناشی از عدم تفکیک این عناصر در اثر رشد سریع گارنت بوده است.
Garnet–mica schist and hornfels rock units are exposed in the east and southeast of Boroujerd. These rocks consist primarily of quartz, K-feldspar, plagioclase, garnet (almandine–spessartine), chlorite, cordierite, andalusite, sillimanite, biotite, muscovite, and minor amounts of apatite, iron oxides (ilmenite and magnetite), and zircon. Whole-rock geochemical analyses reveal that the dominant protoliths are pelitic rocks. Major and trace element compositions suggest that the Boroujerd pelites were deposited along an active continental margin. Garnet porphryblasts in some hornfels samples are compositionally homogeneous with respect to major, trace and rare earth elements; this is attributed to the diffusional re-equilibration at high temperatures (>600 ºC). Garnet in schists and some hornfels samples show reverse compositional zoning with increasing Mn and decreasing Fe and Mg from core to rim. Higher concentrations of Mn in garnet rims are attributed to resorption during retrogression. The presence of chlorite around garnet porphryblasts in these schists also supports resorption during retrogression. In schists, concentrations of HREE and Y in garnet decrease from core to rim. These zoning patterns are interpreted to record garnet growth in a closed system (i.e., Rayleigh fractionation of compatible elements). Core–rim variations in the concentrations of trace elements and rare earth elements in garnet in the hornfels samples is negligible. The lack of prominent zoning of these elements in garnet from hornfels is interpreted as minimal fractionation due to rapid garnet growth.
احمدی خلجی، ا.، 1385. پترولوژی توده گرانیتوئیدی بروجرد، رساله دکتری، دانشکده علوم، دانشگاه تهران، 191.
- حاج ملاعلی، ا. و سهندی، م.ر.، 1371. نقشه زمینشناسی 1:250000 خرمآباد. سازمان زمینشناسی و اکتشافات معدنی کشور.
- Ague, J.J. and Axler, J.A., 2016. Interface coupled dissolution-reprecipitation in garnet from subducted granulites and ultrahigh-pressure rocks revealed by phosphorous, sodium, and titanium zonation. American Mineralogist, 101, 1696–1699.
- Ague, J.J. and Carlson, W.D., 2013. Metamorphism as garnet sees it: the kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements, 9, 439–445.
- Anderson, D.E. and Buckley, G.R., 1973. Zoning in garnets: Diffusion models. Contributions to Mineralogy and Petrology, 40, 87–104.
- Awwiller, D.N., 1994. Geochronology and mass transfer in Gulf Coast mudrocks (south-central Texas, USA): Rb-Sr, Sm-Nd and REE systematics. Chemical Geology, 116, 61–84.
- Baxter, E.F. and Scherer, E.E., 2013. Garnet geochronology: timekeeper of tectonometamorphic processes. Elements, 9, 433–438.
- Bea, F. and Montero, P., 1999. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphic and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochimica Cosmochimica Acta, 63, 1133–1153.
- Bea, F., Montero, P., Garuti, G. and Zacharini, F., 1997. Pressuredepende of rare earth element distribution in amphibolite and granulite-grade garnets. A LA-ICP-MS study. Geostandard Newslett, 21, 253–270.
- Bhatia, M.R. and Crook, K.A.W., 1986. Trace element characteristics of graywackes and tectonic discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.
- Blackburn, W.H., 1969. Zoned and unzoned garnets from the Grenville Gneisses around Gananorue Ontario. Canadian Mineralogist, 9, 691–698.
- Brady, J.B. and Cherniak, D.J., 2010. Diffusion in Minerals: An Overview of Published Experimental Diffusion Data. Reviews in Mineralogy and Geochemistry, 72, 899–920.
- Caddick, M.J. and Kohn, M.J., 2013. Garnet: witness to the evolution of destructive plate boundaries. Elements, 9, 427–432.
- Caddick, M.J., Konopásek, J. and Thompson, A.B., 2010. Preservation of garnet growth zoning and the duration of prograde metamorphism. Journal of Petrology, 51, 2327–2347.
- Carlson, W.D., 2002. Scales of disequilibrium and rates of equilibration during metamorphism. American Mineralogist, 87, 185–204.
- Carlson, W.D., 2006. Rates of Fe, Mg, Mn, and Ca diffusion in garnet. American Mineralogist, 91, 1–11.
- Carlson, W.D., 2012. Rates and mechanism of Y, REE, and Cr diffusion in garnet. American Mineralogist, 97, 1598–1618.
- Carlson, W.D. and Schwarze, E. T., 1997. Petrologic significance of prograde homogenization of growth zoning in garnet: An example from thelano Uplift. Journal of Metamorphic Geology, 15, 631–644.
- Chakraborty, S. and Ganguly, J., 1992. Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contributions to Mineralogy and Petrology, 111, 74–86.
- Coleman, R.G., Lee, D.E., Beatty, L.B. and Brannock, W.W., 1965. Eclogites and eclogites: Their differences and similarities. Geological Society of America Bulletin, 76, 483–508.
- Das, B.K., AL-Mikhlafi, A.S. and Kaur, P., 2006. Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting. Asian Earth Science, 26, 649-668.
- de Béthune, P., Laduron, D. and Boquet, J., 1975. Diffusion processes in resorbed garnets. Contributions to Mineralogy and Petrology, 50, 197–204.
- Dragovic, B., Guevara, V.E., Caddick, M.J., Baxter E.F. and Kylander-Clark, A.R.C., 2016. A pulse of cryptic granulite-facies metamorphism in the Archean Wyoming Craton revealed by Sm–Nd garnet and U–Pb monazite geochronology. Precambrian Research, 283, 24–49.
- El Korh, A., Schmidt, S.T., Ulianov, A. and Potel, S., 2009. Trace element partitioning in HP–LT metamorphic assemblages during subduction related metamor phism, Ile De Groix, France: a detailed LA-ICPMS study. Journal of Petrology, 50, 1107–1148.
- Florence, F.P. and Spear, F.S., 1991. Effects of diffusional modification of garnet growth zoning on P–T path calculations. Contributions to Mineralogy and Petrology, 107, 487–500.
- Ganguly, J., 2010. Cation diffusion kinetics in aluminosilicate garnets and geological applications. Reviews in Mineralogy and Geochemistry, 72, 559–601.
- Gatewood, P.M., Dragovic, B., Stowell, H.H., Baxter, E.F., Hirsch, D.M. and Bloomc, R., 2015. Evaluating chemical equilibrium in metamorphic rocks using major element and Sm–Nd isotopic age zoning in garnet, Townshend Dam, Vermont, USA. Chemical Geology, 401, 151–168.
- Grant, J.A. and Weiblen, P.W., 1971. Retrograde zoning in garnet near the end sillimanite isograde. Ameriacan Journal of Science, 2, 270–296.
- Harangi, S.Z., Downes, H., Ko´sa, L., Szabo´, C.S., Thirlwall, M.F. and Mason, P.R.D., 2001. Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implications. Journal of Petrology, 42, 1813–1843.
- Heimann, A., Spry, P.G., Teale, G.S., Conor, C.H.H. and Pearson, N.J., 2011. The composition of garnet in garnet-rich rocks in the southern Proterozoic Curnamona Province, Australia: an indicator of the premetamorphic physicochemical conditions of formation. Mineralogy and Petrology, 101, 49–74.
- Hickmott, D. and Spear, F., 1992. Major and trace element zoning in garnets from calcareous pelites in the NW Shelburne Falls Quadrangle, Massachusetts; garnet growth histories in retrograded rocks. Journal of Petrology, 33, 965–1005.
- Hollister, L.S., 1969. Contact metamorphism in the Kwoiek area of British Columbia: an end,member of the metamorphic process. Geological Society of America Bulletin, 80, 2465–2494.
- Hollister, L.S., 1966. Garnet zoning: An interpretation based on the Rayleigh fractionation model. Science, 154, 1647-1651.
- Jiao, S., Guo, J., Harley, S. and Peng, P., 2013. Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237, 78–100.
- Jung, C., Jung, S., Nebel d, O., Hellebrand, E., Masberg, P. and Hoffer, E., 2009. Fluid-present melting of meta-igneous rocks and the generation of leucogranites —Constraints from garnet major- and trace element data, Lu–Hf whole rock–garnet ages and whole rock Nd–Sr–Hf–O isotope data. Lithos, 111, 220–235.
- Kelsey, D.E. and Powell, R., 2011. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system. Journal of Metamorphic Geology, 29, 151–166.
- Kohn, M.J., 2003. Geochemical zoning in metamorphic minerals. Treatise on Geochemistry: The Crust, 3, 229–261.
- Kohn, M.J. and Spear, F.S., 2000. Retrograde net transfer reaction insurance for pressure–temperature estimates. Geology, 28, 1127–1130.
- Lanzirotti, A., 1995. Yttrium zoning in metamorphic garnets. Geochimica et Cosmochimica Acta, 59, 4105–4110.
- McDonough, W.F. and Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120, 223–253.
- McLennan, S.M., 2001. Relationship between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 1–24.
- McLennan, S.M. and Taylor, S.R., 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology, 99, 1–21.
- Moore, S.J., Carlson, W.D. and Hesse, M.A., 2013. Origins of yttrium and rare earth element distributions in metamorphic garnet. Journal of Metamorphic Geology, 31, 663–689.
- Nyström, A.I. and Kriegsman, L.M., 2003. Prograde and retrograde reactions, garnet zoning patterns, and accessory phase behaviour in SW Finland migmatites, with implications for geochronology. Geological Society Special Publication, 220, 213–230.
- Otamendi, J.E., de la Rosa, J.D., Patino Douce, A.E. and Castro, A., 2002. Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology, 30, 159–162.
- Pearce, J.A. and Norry, M.J., 1979. Petrogenetic implication of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33–51.
- Pyle, J.M. and Spear, F.S., 1999. Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions. Geological Materials Research, 1, 1–49.
- Roser, B.P. and Korsch, R.J., 1986. Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.
- Sîrbu, S., Buzgar, N. and Kasper, H.U., 2010. Geochemistry of selected garnets in pegmatites from Răzoare formation (Preluca Mountains, Romania). Geology, 56, 109–121.
- Spandler, C., Hermann, J., Arculus, R. and Mavrogenes, J., 2003. Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies: implications for deep subduction zone processes. Contributions to Mineralogy and Petrology, 146, 205–222.
- Spear, F.S., 1989. Petrologic determination of metamorphic pressure-temperature-time paths. In F.S. Spear and Peacock S.M., Ed., Metamorphic pressure-temperature-time paths, Short Course in Geology, 1–55. American Geophysical Union, Washington, D.C.
- Spear, F.S., 1991. On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. Journal of Metamorphic Geology, 9, 379–388.
- Spear, F.S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph Series 1, Washington D.C., 799.
- Spear, F.S. and Kohn, M.J., 1996. Trace element zoning in garnet as a monitor of crustal melting. Geology, 24, 1099–1102.
- Taylor, S.R. and McLennan, S.H., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312.
- Tracy, R.J., 1982. Compositional zoning and inclusions in metamorphic minerals. In: Ferry, J. M. (ed.) Characterization of Metamorphism through Mineral Equilibria. Mineralogical Society of America, Reviews in Mineralogy, 10, 355–397.
- Tracy, R.J., Robinson, P. and Thompson, A.B., 1976. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts. American Mineralogist, 61, 762–775.
- Volkova, N.I., Kovyazin, S.V., Stupakov, S.I., Simonov, V.A. and Sakiev, K.S., 2014. Trace Element Distribution in Mineral Inclusions in Zoned Garnets from Eclogites of the Atbashi Range (South Tianshan). Geochemistry International, 52, 939–961.
- Whitehouse, M.J. and Platt, J.P., 2003. Dating high-grade metamorphism – constraintsfrom rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology, 145, 61–74.
- Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.
- Winkler, H.G.F., 1976. Petrogenesis of Metamorphic Rocks. 4nd Edition, Springer-Verlag, New York, 334.
- Woodsworth, G.J., 1977. Homogenization of zoned garnets from pelitic schists. Canadian Mineralogist, 15, 230–242.
- Yang, P. and Rivers, T., 2002. The origin of Mn and Yannuli in garnet and the thermal dependence of P in garnet and Y in apatite in calc–pelite and pelite, Gagnon terrane, western Labrador. Geological Materials Research, 4, 1–35.