کانهزایی طلای اپیترمال با سنگ میزبان کربناتی کاوند، جنوبغرب زنجان
محورهای موضوعی :نادیا پرتاک 1 , مسعود علیپوراصل 2
1 - دانشگاه صنعتی شاهرود
2 - دانشگاه صنعتی شاهرود
کلید واژه: طلا سنگ میزبان کربناتی اپی¬, ترمال کاوند زنجان,
چکیده مقاله :
محدوده کاوند در جنوبغرب زنجان و در بخش سلطانیه از پهنه ایران مرکزی قرار دارد. توالیهای سنگی پرکامبرینپسین-کامبرینپیشین سنگ میزبان کانهزائی هستند، در این میان بخش عمده کانهزائی با سنگهای دولومیتی سازند سلطانیه همراه است. کانهزائی به شکلهای انبوههای، رگه-رگچهای و پرشدگی فضاهای خالی کارستی مشاهده میشود. دگرسانیهای اکسیدآهنی، کربناتی و سیلیسی در منطقه غالب است. هماتیت، اسپکیولاریت، طلا، کالکوپیریت، پیریت، کالکوسیت، مالاکیت، آزوریت، گوتیت و لیمونیت کانی های معدنی، درحالیکه کوارتز، باریت، کلسیت و دولومیت کانی های باطله کانه زایی را تشکیل می دهند. آهن و طلا عناصر مهم کانسارساز در این منطقه هستند. مقدار متوسط آهن و طلا در کانهزایی کاوند بهترتیب 7/15 درصد (بیشینه 4/28 درصد) و 3/1 گرم در تن (بیشینه 6/14 گرم در تن) است. دادههای زمینشیمیایی همبستگی مثبت بالایی را میان طلا با نقره، آرسنیک، آنتیموان، مس، روی، کادمیم، و باریم نشان میدهد. مطالعات میانبارهای سیال بر روی کوارتز از نمونههایی با همیافتی کانیشناسی کوارتز+سولفید+طلا و اکسیدهایآهن+باریت+کوارتز+طلا متوسط درجه حرارت 84/277 درجهسانتیگراد و شوری 67/3 درصد وزنی معادل نمک طعام را ثابت میکند. کانهزائی بهاحتمال در فشار کمتر از 200 اتمسفر و عمق بیش از 700 متری تشکیل شده است. تجزیه میکروپروبی چندعنصری دانه های طلا از رسوبات بستر آبراهه ای نشان می دهد که در ترکیب طلای کاوند مقادیر طلا و نقره غالب است. مقایسه ترکیب شیمیایی ذرات طلای کاوند با آنهایی از انواع مختلف کانسارهای طلا، منشا اپیترمالی آنها را ثابت میکند. کانهزایی کاوند را میتوان یک کانسار طلای اپیترمال با سنگ میزبان کربناتی در نظرگرفت.
The Kavand area is located in the southwest of Zanjan, in Soltanieh district in Central Iran zone. Mineralization is hosted by upper Precambrian-lower Cambrian sedimentary sequences, and it is mainly associated with the dolomitic rocks of the Soltanieh Formation. Mineralization appears as massive, vein-veinlets and karst open space filling. Dominant alterations include iron-oxide, carbonate and silicic types. The ore minerals conist of hematite, specularite, gold, chalcopyrite pyrite, chalcocite, covellite, malachite, azurite, goethite and limonite, while quartz, barite, calcite and dolomite are gangue minerals. The Fe and Au are important ore-forming elements in this area. The average content of Fe and Au in the Kavand mineralization is 15.7% (Max. 28.4%) and 1.3 ppm (max. 14.6 ppm), respectively. Geochemical data represent a high positive correlation between Au with Ag, As, Sb, Cu, Zn, Cd, and Ba. Fluid inclusion studies on quartz from samples with quartz+sulfide+gold and iron oxides+barite+quartz+gold mineral associations indicate that average temperature was 277.84 ºC and salinity was 3.67 wt. % NaCl. Mineralization is likely formed under pressures below than 200 bars and a depth over than 700 m. The multi-element microprobe analyses of gold grains from stream sediments demonstrate that Au and Ag contents are dominant in the composition of Kavand gold index. The chemical composition of the Kavand gold particles compared with those from various gold deposits proves their epithermal source. The Kavand mineralization can be considered as a carbonate rock-hosted epithermal gold deposit.
آدابی، م.ح.، 1390. ژئوشیمی رسوبی، انتشارات آرین زمین، چاپ دوم، 504.
- باباخانی، ع.ر. و صادقی، خ.، 1383. گزارش و نقشه زمینشناسی ورقه زنجان، سری 100000/1، شماره 5663، سازمان زمینشناسی و اکتشافات معدنی کشور.
- پرتاک، ن.، 1396. کانیشناسی، ژئوشیمی و خاستگاه کانهزایی اکسیدهای آهن–طلا- مس در منطقه کاوند، جنوب باختر زنجان، پایاننامه کارشناسی ارشد، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، 170.
- سازمان زمینشناسی و اکتشافات معدنی کشور، 1357. اکتشافات ژئوشیمیایی و کانی سنگین در چهارگوش 1:100000 زنجان، شماره 5663، گزارش داخلی.
- سازمان صنعت، معدن و تجارت استان زنجان، 1387. اکتشافات ژئوشیمیایی سیستماتیک در ورقهی 1:100000 زنجان، شماره 5663، گزارش داخلی.
- سازمان صنعت، معدن و تجارت استان زنجان، 1389. پیجویی به روش اکتشافات ژئوشیمیایی 25000/1 در محدوده کاوند، جنوب غرب زنجان، گزارش داخلی.
- سهرابی، ق. و رضائی اقدم، م.، 1394. کانه زايي نوع IOCG در زون متالوژني بستانآباد- ميانه (شمال شرق هشترود). سی و چهارمین گردهمائی و دومین کنگره بینالمللی تخصصی علوم زمین، سازمان زمینشناسی و اکتشافات معدنی کشور، تهران.
- مظلومی، ع.ر، کریم¬پور، م.ح، رسا، ا.، رحیمی، ب. و وثوقی عابدینی، م.، 1387. کانسار طلای کوه¬زر تربیت حیدریه، مدل جدیدی از کانی¬سازی طلا، مجله انجمن بلورشناسی و کانی¬شناسی ایران، 3، 363-376.
- Asadi, H.H., 2000. The Zarshuran gold deposit model, applied in mineral exploration GIS in Iran, Ph.D. thesis, ITC, Netherland, Dissertation, 78, ISBN 90-6164-1853.
- Bodnar, R., 1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluid, Economic Geology, 78, 535-542.
- Boni, M., Gilg, H.A., Balassone, G., Schneider, J., Allen, C.R. and Moore F., 2007. Hypogene Zn carbonate ore in the Angouran deposit, NW Iran, Mineralium Deposita, 42, 799-820.
Cline, J.S., Hofstera, A.H., Muntean, J.L., Tosdal, R.M. and Hickey K.A. 2005. Carlin–type gold deposits in Nevada: critical geologic characteristics and viable models. Society of Economic Geologists, Inc. Economic Geology, 100th Anniversary Volume, 451- 484.
- Cox, K.G., Bell, J.D. and Pankhurst R.J., 1979. The interpretation of igneous rocks, George, Allen and Unwin, London, 445.
- Daliran, F., Hofstra, A.H., Walter, J. and Stuben D., 2002. Agdrreh and Zarshouran SRHDG deposits, Takab region, NW Iran, GSA Annual Meeting, Abstr with Prog, Session 68-8.
- Daliran, F., 2008. The carbonate rock-hosted epithermal gold deposit of Agdarreh, Takab geothermal field, NW Iran-Hydrothermal alteration and mineralization, Mineralium Deposita, 43, 383-404.
- Flood, P.G. and Chivas A.R., 1995. Origin of massive dolomite, Leg 143, Hole 866A, Resolution Guyot, Mid-Pacific Mountains: in Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M.(eds.), Proc. ODP, Sci. Result, 143, 161-170.
- Gill, J.B., 1981. Orogenic andesites and plate tectonics, Mineral and rocks Berlin, Heidelberg, New York, Springer, 16, 390.
- Goss, A.R. and Kay S.M., 2009. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (28° S, 68° W), Earth and Planetary Science Letters, 279, 97-109.
- Heidari, S.M., Daliran, F., Paquette, J.L. and Gasquet D., 2015. Geology, timing, and genesis of the high sulfidation Au (-Cu) deposit of Touzlar, NW Iran, Ore Geology Reviews, 65, 460-486.
- Higgins, M., 2012. Placer gold provenance in the Black Hills Creek west-central Yukon: Insight from grain morphology and geochemistry, BSc Thesis, Honours Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia, 95.
- Hofstra, A.H., 2002. Diverse origins of sedimentary rock-hosted disseminated gold deposits worldwide, Overview, GSA Annual Meeting, Abstr with Prog, Session 63-1.
- Hunt, J.A., Baker, T. and Thorkelson D.J., 2007, A review of iron oxide copper-gold deposits, with focus on the Wernecke breccias, Yukon, Canada, as an Example of a non-magmatic end member and implications for IOCG genesis and classification. Exploration and Mining Geology, 16 (3–4), 209–232.
- Irvine, T.N. and Baragar W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks, Canadian journal of Earth Sciences, 8, 523–548.
- Karimi, M., 1993. Petrographic-mineralogical studies and the genesis of the Au-As ore at Zarshouran (Takab), M.Sc. thesis, University of Tarbiat Moallem, Tehran, 264.
- Kovalenko, V.I., Naumov, V.B., Girnis, A.V., Dorofeeva, V.A. and Yarmolyuk V.V., 2010. Average composition of basic magmas and mantle sources of island arcs and active continental margins estimated from the data on melt inclusions and quenched glasses of rocks, Petrology, 18, 1–26.
- Kirschbaum, M.J. and Hitzman M.W., 2016. Guelb Moghrein: an unusual carbonate-hosted iron oxide-copper-gold deposit in Mauritania, Northwest Africa. Economic Geology, 111,3, 763-770.
- Land, L., 1985. The origin of massive dolomite: summary and suggestion. Journal of Geological Education, 33, 112-125.
- Maniar, P.D. and Piccoli P.M., 1989. Tectonic discrimination of granitoids, Geological Society of America Bulletin, 101, 635-643.
- Mehrabi, B., Yardley, B.W.D. and Cann J.R., 1999. Sedimet-hosted disseminated gold mineralization at Zarshura, NW Iran, Mineralium Deposita, 34, 673-696.
- Mehrabi, B., Yardley, B.W.D. and Komninue A., 2003. Modelling the As-Au association in hydrothermal gold mineralization: Example of Zarshuran deposit, NW Iran, Journal of Sciences, Islamic Republic of Iran, 14, 37-52.
Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M. and Ghaderi M., 2015. Iron and Fe-Mn mineralisation in Iran: implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
- Palacios, C. and Herail G., 2001. The composition of gold in the Cerro Casale gold-rich porphyry deposit, Maricunga belt, northern Chile, Canadian Mineralogist, 39, 907–915.
- Rao, C.P., 1996. Modern carbonates, tropical, temperate, polar: introduction to sedimentology and geochemistry, Arts of Tasmania, 206.
- Robert, F., Poulsen, K.H. and Dube B., 2015. Gold deposits and their geological classification, Exploration Geochemistry, 29, 209-219.
- Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation, England, Longman Scientific & Technical, 351.
- Sass, E. and Bein A., 1988. Dolomites and salinity: a comparative geochemical study. In: Shukla, V., And Baker, P.A. (eds): Sedimentology and geochemistry of dolostones. Society for Sedimentary Geology, 43, 223-233.
- Shepherd, T.J., Rankin, A.H. and Alderton D.H.M., 1985. A practical guide to fluid inclusion studies, Blackie, Glasgow, Chapman, New York, 239.
- Shukla, v. and Baker P.A., 1988. Sedimentology and geochemistry of dolostones, Society of Economic Paleontologist and Mineralogists, Special Publication, 43, 266.
- Stöcklin, J., 1968. Structural history and tectonics of Iran: A review, The American Association of Petroleum Geologists Bulletin, 52, 1229-1258.
- Stöcklin, J. and Eftekharnezhad J., 1969. Geological mapping of Zanjan quadrangle, Number D4, Series 1:250, 000, Geological Survey of Iran (GSI), Tehran.
- Sun, S.S. and McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, A.D., and Norry, M.J., eds., Magmatism in the oceanic basins, Geological Society of London Special Publication, 42, 313-345.
- Townley, B.K., Herail, G., Maksaev, V., Palacios, C., Parseval, P., Sepuldeva, F., Orellana, R., Rivas, P. and Ulloa C., 2003. Gold grain morphology and composition as an exploration tool: Application to gold exploration in covered areas, Geochemistry, Exploration, Environment, Analysis, 3, 29-38.
- Vahrenkamp, V.C. and Swart P.K., 1990. New distribution coefficient for incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology, 18, 387-391.
- Veizer, J., 1978. Secular variations in the composition of sedimentary carbonate rocks, II. Fe, Mn, Ca, Mg, Sr and minor constituents. Precambrian Research, 6, 381-413.
- Whitney, D.L. and Evans B.W., 2010. Abbreviations for names of rock-forming minerals, American Mineralogist, 95, 185-187.
- Wilkinson, J., 2001. Fluid inclusions in hydrothermal ore deposits, Lithos, 55, 229-272.
- Wilson, M., 1989. Igneous petrogenesis a global tectonic approach, Department of Earth Science, University of Leeds, 466.