تعیین منشا سیال کانه¬ساز در کانسار روی و سرب گل¬زرد، الیگودرز با استفاده از مطالعات زمین شیمیایی و میانبارهای سیال
محورهای موضوعی :علیرضا زراسوندی 1 , منا صامتی 2 , زهرا فریدونی 3 , محسن رضایی 4 , هاشم باقری 5
1 - دانشگاه شهید چمران اهواز
2 - دانشگاه لرستان
3 - دانشگاه شهید چمران اهواز
4 - دانشگاه شهید چمران اهواز
5 - دانشگاه اصفهان
کلید واژه: اختلاط هم¬, دما کانسار گل زرد کانه زایی چینهکران میان بارهای سیال,
چکیده مقاله :
کانسار روی و سرب گل زرد در شمال شرق شهرستان الیگودرز (استان لرستان)، در فیلیت ها و ماسهسنگهای تریاس بالایی- ژوراسیک در زون ساختاری سنندج سیرجان رخنمون دارد. کانه زایی در این کانسار شامل اسفالریت، گالن و کالکوپیریت است که عمدتاً در امتداد رگه های کوارتزی قرارگرفتهاند. دو افق کانه زا، فیلیت های با کانه زایی بالا و ماسه سنگ های دگرگونشده با کانه زایی اندک می باشند. مطالعات کانیشناسی نشان میدهد که گالن، اسفالریت و کالکوپیریت کانه های فلزی و کوارتز نیز مهم ترین کانی باطله در کانسار مورد مطالعه میباشد. شواهد نشان میدهد کانه زایی در کانسار گل زرد، همزاد و دیرزاد میباشد. بارزترین الگوی ساختاری در منطقه، کانه زایی چینهکران است .هدف از انجام این مطالعه، تعیین نوع و ویژگی های سیال کانه ساز در تفکیک افق های کانه زا بعلاوه تعیین منشا سیال کانه ساز در کانسار گل زرد میباشد. غنیشدگی LREE، (La/Lu میانگین 8/4) و بی هنجاری مثبت Eu (میانگین 67/1) شرایط کاهشی و سیال گرمابی را نشان میدهد. داده های میانبار سیال دمای همگنشدگی °C5/199-139، شوری (wt%equ.NaCl) 38/30-21/5 و چگالی (gr/cm3) 1/1-9/0 را در کانسار نشان میدهد. بررسی سیر تکاملی سیال، نشاندهنده اختلاط همدمای سیالات در حین کانه زایی است که شامل اختلاط سیالات گرمابی با آب دریا و همچنین آب جوی میباشد. میتوان گفت، خروج سیال گرمابی از عمق، ورود به محیط دریایی و کاهش دما در اثر اختلاط با آب دریا، بالاآمدن تا نزدیک سطح آب دریا، ورود به رسوبات دریایی و چرخش در فضاهای خالی این رسوبات و سپس، آبشویی فلزات از رسوبات و تهنشست آنها در امتداد فضاهای خالی و رگههای کوارتزی صورت گرفته است.
The Gol-e-Zard Zn-Pb deposit is located in northeastern of the Aligudarz region (Lorestan province). This deposit is exposed in phyllite and meta-sandstones of upper Triassic-Jurassic of the Sanandaj-Sirjan Zone. The mineralization includes sphalerite, galena and chalcopyrite, which are mainly along quartz veins. Two mineralized horizons are phyllite with high mineralization and meta-sandstone with low mineralization. The mineralogical studies show that galena, sphalerite and chalcopyrite are metallic ores and quartz is also the most abundant gang mineral in the studied deposit. The evidence indicate that the mineralization of the Gol-e-Zard deposit is syngeneic and epigenetic. The most significant structural pattern is the stratabound mineralization in the region. The aim of this study is to determine the type and characteristics the mineralizing fluid in the discriminating of mineralized horizons, besides the determining of source of the fluid in the Gol-e-Zard deposit. LREE enrichments (La/Lu average 4.8) and positive Eu anomalies (average 1.2) indicate the anoxic condition and hydrothermal fluids. Fluid inclusion data shows homogenization temperatures of 139-199.5°C, salinity 5.21-30.38 wt%equ.NaCl and density 0.9-1.1 gr/cm3 in this deposit. Investigation of evolution path of the fluids shows isothermal mixing of fluids during mineralization that comprises the mixing of magmatic water with sea water and also meteoric water. Thus, the mineralization can be summarized as: expulsion of the hydrothermal fluids from the depth, entering into sea water and reducing the temperature of hydrothermal fluids due to mixing with sea water, ascending to the sea level, moving through sediments and circulating in void spaces of and then the leaching of metals from sediments and deposited along the void space and quartz veins.
احیا، ف.، 1388. ژئوشیمی و منشا کانسارهای روی و سرب عمارت و باباقله، جنوب اراک. پایاننامه دکتری. دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران. 178.
باقری، ه.، پاکزاد، ح. و تیموری اصل، ف.، 1390. بررسي منشاء فلزات و سيالات كانه زا در كانسار سرب و روي ايرانكوه. پژوهشهاي چينه نگاري و رسوبشناسی، 44، 83-102.
زمانیان، ح. و اسداللهی، ب.، 1389. ذخایر صفحهای و تکتونیک فلزی. جلد اول. انتشارات دانشگاه لرستان. خرمآباد.
سهیلی، م.، جعفری م. و عبداللهی م.، 1371. نقشه زمینشناسی 100000/1 ناحیه الیگودرز. سازمان زمینشناسی ایران.
شهاب پور، ج.، 1385. زمینشناسی اقتصادی. انتشارات شهید باهنر کرمان. کرمان. 530.
فرهادی نژاد، ط.، 1377. زمینشناسی، کانیشناسی و ژنز کانسار روی و سرب گل زرد شمال الیگودرز. پایاننامه کارشناسی ارشد. دانشگاه تربیت مدرس تهران. 140.
قربانی، م.، 1381. زمینشناسی اقتصادی، انتشارات آرین، 550.
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: newdata and interpretations. Tectonophysics, 229 (x), 211–238.
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its pro foreland evolution. American Journal of Science, 304, 1–20.
Alavi, M., 2007. Structure of the Zagros Fold-Thrust Belt in Iran. American Journal of Science, 307, 1064–1095.
Ansdel, M.K., Nesbit, E.B. and Longstaff J.F., 1989. A Fluid Inclusion and Stable Isotope Study of the Tom Ba-Pb-Zn Deposit, Yukon Territory, Canada. Economic Geology, 84, 841-856.
Bodnar, R. j. and Vityk, M.O., 1994. Interpretation of micro thermometric data for H2O – NaCl fluid inclusions. In fluid inclusions in Minerals, Methods and Applications. Virginia Tch, Blacksburg.
Bonsall, T. A., Spry, P. G., Voudouris, P., S. Seymour, K., Tombros, S. and Melfos, V., 2011. the geochemistry of carbonate-replacement Pb-Zn-Ag mineralization in the Lavrion district, Attica, Greece: Fluid inclusion, stable isotope, and rare earth element studies, Economic Geology, 106, 619-651.
Bouabdellah, M., Beaudoin, G., Leach, D., Grandia, F. and Cardellach, E., 2009. Genesis of the Assif El Mal Zn–Pb (Cu, Ag) vein deposit. An extension-related Mesozoic vein system in the High Atlas of Morocco. Structural, mineralogical, and geochemical evidence. Miner Deposita, 44, 689–704.
Canet, C., Alfonso, P., Melgarejo, J.C. and Fallick, A.E. 2003. Origin of the mineralizing fluids from the Carboniferous sedex deposits of L'Alforja (SW Catalonian Coastal Ranges, Spain. Journal of Geochemical Exploration, 79, 513-517.
Davis, J.F., Prevec, S.A., Whitehead, R.E. and Jackson, S.E., 1998. Variations in REE and Sr-isotope chemistry of carbonate gangue, Castellanos Zn–Pb deposit Cuba, Chemical Geology, 144, 99-119.
Davoudian, A.R., Genser, J., Dachs, E. and Shabanian, N., 2008. Petrology of eclogites from northof Shahrekord, Sanandaj-Sirjan Zone, Iran. Mineralogy and Petrology, 92, 393–413.
Ehya, F., 2012, Variation of mineralizing fluids and fractionation of REE during the emplacement of the vein-type fluorite deposit at Bozijan, Markazi Province, Iran. Journal of Geochemical Exploration, 112, 93–106.
Esna-Ashari, A., Tiepolo, M., Vlizade, M.V. and Hassanzadeh, J., 2012. Geochemistry and Zircon U-Pb geochronology of Aligudarz granitoid complex, Snandaj-Sirjan Zone, Iran. Journal of Asian Earth Sience, 43, 11-22.
He, L., Song, Y., Chen, K., Hou, Z., Yu, F., Yang, Z., Wei, J., Li, Z. and Liu, Y., 2009. Thrust-controlled, sediment-hosted, Himalayan Zn–Pb–Cu–Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geology Reviews, 36, 106–132.
Jiang, S.Y., Chen, Q.Y., Ling, H.F., Yang, J.H., Feng, H.Z. and Ni, P., 2006. Trace and rare earth element geochemistry and Pb–Pb dating of black shales and intercalated Ni–Mo–PGE–Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China, Miner Deposita, 41, 453–467.
Kelley, K., Dumoulin, J.A. and Jennings S., 2004. The Anarraaq Zn-Pb-Ag and Barite Deposit, Northern Alaska: Evidence for Replacement of Carbonate by Barite and Sulfides. Economic Geology, 99, 1577–1591.
Kesler, E.S., 2005. Ore-Forming Fluids. ELEMENTS, 1, 13-18.
Leach, D.L., Bradely, D.C., Hutson, D., Pisarevsky, S.A., Taylor, R.D. and Gardoll, S.J., 2010. Sediment-Hosted Lead-Zinc Deposits in Earth History, Economic Geology, 105, 593–625.
Ma, G., Beaudoin, G., Qi, S. and Li, Y., 2004. Geology and geochemistry of the Changba SEDEX Pb-Zn deposit, Qinling orogenic belt, China. Mineralium Deposita, 39, 380–395.
Mohajjel, M., Fergusson, C.L. and Sahandi, M.R., 2003. Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Asian Earth Sciences, 21, 397–412.
Orgun, Y., Gultekin, A.H. and Onal, A., 2005. Geology, mineralogy and fluid inclusion data from the Arapucan Pb–Zn–Cu–Ag deposit, Canakkale, Turkey. Journal of Asian Earth Sciences, 25, 629–642.
Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer. New York. 1273.
Roedder, E., 1979a. “Fluid inclusions as samples of ore fluids” In H.L. Barenes (ed.) Geochemistry of Hydrothrmal Ore Deposits. 2nd edn. Widley Inrerscience. New York. 684-738.
Shelton, L.K. and McMenamy, A.T., 2004. “Deciphering the complex fluid history of a greenstone- hosted gold deposits: fluid inclusion and stable isotope studies of the giant mine”, Yellowknife, Northwest Territories. Canada, Economic Geology, 99, 1643- 1663.
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95,1, 185-187.
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229–272.
Ye, L., Cook, N.J., Ciobanu, C.L., Yuping, L., Qian, Z., Tiegeng, L., Wei, G., Yulong, Y. and Danyushevskiy, L., 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study, Ore Geology Reviews, 39, 188–217.
Zarasvandi, A., Charchi, A., Carranza, E.J.M. and Alizadeh, B., 2008. Karst bauxite occurrence in the Zagros Mountain Belt, Iran, Ore Geology Reviews, 34, 521- 532.