منشایابی منابع رسوب در فصلهای بهار و پاییز با استفاده از ردیاب¬های ژئوشیمیایی
محورهای موضوعی :
1 - شهید بهشتی
2 - دانشگاه شهیدبهشتی
کلید واژه: حوزه آبخیز طالقانی فرسایش فصلی تولید رسوب کاربری اراضی منابع رسوب منشایابی رسوب,
چکیده مقاله :
هدف از این پژوهش تعیین تاثیر فصل بهار و پاییز بر تولید رسوب حوضه طالقانی، خرمآباد، استان لرستان با استفاده از ردیابهای ژئوشیمیایی و مدل ترکیبی منشایابی رسوب است. به این منظور 39 نمونه خاک از منابع رسوب با کاربری های مختلف (کشاورزی 17، مرتع 12 و جنگل 10 نمونه) برداشت گردید و همچنین جهت برداشت نمونه های رسوب معلق هنگام رخداد بارندگی، 7 نمونه رواناب از خروجی حوضه طی سال 1390 تا 1391 (۳ نمونه در فصل پاییز و ۴ نمونه در فصل بهار) نیز برداشت شد. پس از آماده سازی نمونه ها 11 عنصر ژئوشیمیایی شامل آهن، روی، مس، منیزیم، سدیم، کلسیم، پتاسیم، منگنز، کربن آلی، نیتروژن و فسفر بهعنوان ردیاب های اولیه در نمونههای منابع رسوب و نمونههای رسوب معلق اندازهگیری شد. با استفاده از تحلیل آماری کروسکال والیس و تحلیل آماری تابع تشخیص، ردیاب های روی، کربن آلی، منیزیم و کلسیم بهعنوان ترکیب بهینه ردیاب در تفكيك منابع رسوب انتخاب شدند. با انتخاب ترکیب بهینه ردیاب ها، نمونه های منابع رسوب با نمونه های رسوب معلق در رواناب در دو فصل متفاوت بهصورت جداگانه مقایسه شدند. نتایج نشان داد که سهم کاربری اراضی در تولید رسوب در فصل پاییز برای کشاورزی، مرتع و جنگل به ترتیب برابر با 9/67 درصد، 1/32 درصد و صفر درصد است. نتایج مقایسه منابع رسوب با نمونه های رسوب معلق در رواناب در فصل بهار نشان داد که سهم کاربری اراضی در تولید رسوب برای کشاورزی 3/44 درصد، مرتع 3/44 درصد و جنگل 4/11 درصد است. این نتایج نشان میدهد که در فصل پاییز کاربری کشاورزی بیشترین سهم تولید رسوب را دارد که لازم است در این فصل مدیریت پوشش گیاهی اراضی کشاورزی مورد توجه قرار گیرد تا از فرسایش و تولید رسوب جلوگیری شود.
The objective of this study is to investigate the effect of seasonal changes on erosion and sediment yield in land-use types in Taleghani catchment, using the fingerprinting technique. In view of this, 39 soil samples including 17, 12, and 10 samples were collected from different sources: agriculture, rangeland, and forest, respectively. 7 samples also were collected from suspended sediments in two different seasons (3 samples in autumn and 4 samples in spring) from 2012 until 2013. After preparing the samples, 11 tracers including C, N, P, Na, K, Cu, Zn, Mg, Mn, Fe and Ca were measured as the primary tracers in sediment sources and sediment samples. Based on Kruskal-Wallis test and discriminant function analysis, four tracers including Mg, C, Zn and Ca were selected as the optimum set of tracers that can discriminate 3 sediment sources. Then sediment source samples were compared with suspended sediment samples. The results showed that the contribution of sediment sources is 67.9%, 32.1%, and 0 percent for agriculture, rangeland and forest, respectively in autumn season and the contribution of sediment sources is 44.3%, 44.3% and 11.4% for agriculture, rangeland, and forest, respectively in spring season. These results indicate the role of human activity on the erosion rate and land-use types as a very important factor in accelerating the erosion and sedimentation process in Iranian basins.
حکیم¬خانی، ش.، 1385. بررسی استفاده از ردیاب¬ها در منشایابی رسوبات آبی ریزدانه (مطالعه موردی حوزه ایستگاه پخش سیلاب پلدشت). پایاننامه دکتری، دانشکده منابع طبیعی دانشگاه تهران.
حکیم¬خانی، ش. و احمدی، ح.، 1387. تعیین سهم زیرحوضه¬ها در تولید رسوب با استفاده از روش منشایابی (مطالعه موردی: حوضه مرگن پلدشت، ماکو). ویژه¬نامه منابع طبیعی، مجله علوم کشاورزی و منابع طبیعی 11(1)، 181-191
نصرتی، ک.، احمدی، ح. و شریفی، ف.، 1391. منشایابی منابع رسوب: ارتباط بین فعالیت¬های آنزیمی خاک و رسوب. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک 16(60)، 227-237
نصرتی، ک.، احمدی، ف. و نظری سامانی، ع ا.، 1392. تعیین نقش اشکال فرسایش سطحی و زیرسطحی در منشا رسوبات معلق و کف آبراهه درمقیاس حوزه آبخیز. مجله پژوهش¬های دانش زمین 3(9)، 37-46
Ballantine, D., Walling, D., Collins, A., and Leeks, G., 2009. The content and storage of phosphorus in fine-grained channel bed sediment in contrasting lowland agricultural catchments in the UK. Geoderma, 151, 141-149.
Bechet, J., Duc, J., Loye, A., Jaboyedoff, M., Mathys, N., Malet, J., Klotz, S., Bouteiller, C., Rudaz, B., and Travelletti, J. 2016. Detection of seasonal cycles of erosion processes in a black marl gully from a time series of high-resolution digital elevation models (DEMs). Earth Surface Dynamics. 4, 781-798.
Brown, M., Carter, D., Lehrsch, G., and Sojka, R. 1995. Seasonal trends in furrow irrigation erosion in southern Idaho. Soil Technology, 8(2), 119-126.
Collins, A., and Walling, D., 2007. Sources of fine sediment recovered from the channel bed of lowland groundwater-fed catchments in the UK. Geomorphology, 88, 120-138.
Collins, A., Walling, D., Webb, L., and King, P. 2010. Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma, 155, 249-261.
Fox, J., and Papanicolaou, A., 2008. Application of the spatial distribution of nitrogen stable isotopes for sediment tracing at the watershed scale. Hydrology, 358,46-55.
Hatfield, R.G. and Maher, B.A., 2009. Fingerprinting upland sediment sources: particle size‐specific magnetic linkages between soils, lake sediments and suspended sediments. Earth Surface Processes and Landforms, 34, 1359-1373.
Kirkby, M., and Cox, N. 1995. A climatic index for soil erosion potential (CSEP) including seasonal and vegetation factors. Catena, 25(1), 333-352.
Knapen, A., J. Poesen., and De Baets, S. 2007. Seasonal variations in soil erosion resistance during concentrated flow for a loess-derived soil under two contrasting tillage practices. Soil and Tillage Research, 94(2), 425-440.
Lamba, J., Karthikeyan, K.G. and Thompson, A.M. 2015. Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting. Geoderma, 239, 25-33.
Manjoro, M., Rowntree, K., Kakembo, V., Foster, I., and Collins, A. L. 2016. Use of sediment source fingerprinting to assess the role of subsurface erosion in the supply of fine sediment in a degraded catchment in the Eastern Cape, South Africa. Environmental Management, 194, 27-41.
Nosrati, K., Govers, G., Ahmadi, H., Sharifi, F., Amoozegar, M. A., Merckx, R., and Vanmaercke, M., 2011. An exploratory study on the use of enzyme activities as sediment tracers: biochemical fingerprints?. Sediment Research, 26, 136-151.
Nosrati, K., Govers, G., Semmens, B. X. and Ward, E. J. 2014. A mixing model to incorporate uncertainty in sediment fingerprinting. Geoderma, 217, 173-180.
Ollivier, P., B. Hamelin., and Radakovitch, O. 2010. Seasonal variations of physical and chemical erosion: A three-year survey of the Rhone River (France). Geochimica et Cosmochimica Acta, 74(3), 907-927.
Porto, P., Walling, D.E., and Callegari, G. 2009. Investigating the effects of afforestation on soil erosion and sediment mobilisation in two small catchments in Southern Italy. Catena, 79, 181-188.
Pulley, S., Foster, I. and Antunes, P. 2014. The uncertainties associated with sediment fingerprinting suspended and recently deposited fluvial sediment in the Nene river basin. Geomorphology, 228(1), 303-319.
Puustinen, M., Tattari, S., Koskiaho, J., and Linjama, J. 2007. Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil and Tillage Research, 93(1), 44-55.
Rutherford, P.M., McGill, W.B., Arocena, J.M. and Figueiredo, C.T. 2008. Total nitrogen. In: M.R. Carter and E.G. Gregorich (Editors), Soil Sampling and Methods of Analysis, CRC Press, Taylor and Francis Group, Boca Raton.
Scholz, G., Quinton, J.N., and Strauss, P. 2008. Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. Catena, 72(1), 91-105.
Skjemstad, J.O., and Baldock, J.A. 2008. Total and organic carbon. In: Carter, M.R., Gregorich, E.G. (Eds.), Soil Sampling and Methods of Analysis. CRC Press, Taylor and Francis Group, Boca Raton, 225-237.
Tiecher, T., Minella, J. P. G., Evrard, O., Caner, L., Merten, G. H., Capoane, V., Didone, E. J., and Santos, D. R. 2016. Fingerprinting sediment sources in a large agricultural catchment under no‐tillage in Southern Brazil (Conceição River). Land Degradation and Development, 29(4), 939-951
Wallbrink, P., Martin, C., and Wilson, C. 2003. Quantifying the contributions of sediment, sediment-P and fertiliser-P from forested, cultivated and pasture areas at the landuse and catchment scale using fallout radionuclides and geochemistry. Soil and Tillage Research, 69, 53-68.
Wallbrink, P.J., and Croke, J. 2002. A combined rainfall simulator and tracer approach to assess the role of Best Management Practices in minimising sediment redistribution and loss in forests after harvesting. Forest Ecology and Management, 170, 217-232
Walling, D.E., Owens, P.N., Waterfall, B.D., Leeks, G.J.L., and Wass, P.D., 2000. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK. The Science of the Total Environment, 251, 205-222.
Wang, B., Zheng, F., Römkens, M.J.M. and Darboux, F. 2013. Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1–10.
Wilkinson, S., Wallbrink, P., Hancock, G., Blake, W., Shakesby, R., and Doerr, S., 2009. Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest. Geomorphology, 110, 140-151.