شیمی کانی کلینوپیروکس در ارزیابی دما - فشار و ژنز بازالت¬های متاسوماتیسمی سازند هرمز در گنبدهای نمکی گچین و جزیره هرمز، جنوب ایران
محورهای موضوعی :رقیه نعمتی 1 , علی کنعانیان 2 , محمد علی مکی زاده 3 , صدیقه تقی پور 4
1 - پردیس علوم، دانشگاه تهران
2 - پردیس علوم، دانشگاه تهران
3 - دانشکده علوم، دانشگاه اصفهان
4 - پردیس علوم، دانشگاه تهران
کلید واژه: سازند هرمز گنبد نمکی کلینوپیروکسن ترموبارومتری محیط تکتونیکی.,
چکیده مقاله :
گنبدهای نمکی گچین و هرمز متشکل از سازند هرمز، در استان هرمزگان و منطقه زاگرس چینخورده واقع شده اند. براساس مطالعات سنگشناسی، کانی های سنگ های بازالتی در دو مرحله تشکیل شده اند؛ ابتدا کانی های آذرین: کوارتز، فلدسپار، پیروکسن، آمفیبول و سپس کانی های متاسوماتیسمی: ترمولیت - اکتینولیت، کلریت، اپیدوت، کلسیت، بیوتیت، آلبیت و اکسید آهن. متاسوماتیسم شدید در منطقه، کانی های تشکیل دهنده سنگ ها را تغییر داده است؛ ولیکن اکثر کلینوپیروکسن ها برخلاف سایر کانی ها، بدون تغییر باقیماندهاند، بنابراین از شیمی کلینوپیروکسن ها جهت تشخیص طبیعت و محیط تکتونیکی ماگمای مادر در سازند هرمز منطقه استفاده گردید. آنالیز نقطه ای میانگین ترکیب کلینوپیروکسن های گنبد نمکی گچین را اوژیتWo27.66En45.44Fs26.91)) و کلینوپیروکسن های گنبد نمکی هرمز را اوژیت تا دیوپسید ((Wo43.36En32.71Fs23.93 نشان داد. این کانی ها از گروه کلسیم - اسکولا هستند. نمودارهای شیمیایی براساس ترکیب کلینوپیروکسن ها، نمونههای گنبد نمکی هرمز را از نوع بازالت های جزایر قوسی و گنبد نمکی گچین را از نوع بازالت های تولئیتی درون قاره ای و با طبیعت ساب آلکالن معرفی می کنند. میانگین دمای تقریبی تشکیل کلینوپیروکسن ها برای گنبد هرمز 875 درجه سانتی گراد، جهت گنبد گچین 997 سانتی گراد و فشار تشکیل آنها کمتر از 2kb به دست آمد.
Gachin and Hormoz island salt domes are composed of the Hormoz Formation and both are located in Hormozgan province and folded Zagros zone. Based on petrography, minerals of basaltic rocks formed in two stages: first magmatic minerals include in quartz, feldspar, pyroxene, amphibole, and then metasomatic minerals: tremolite - actinolite, chlorite, epidote, calcite, biotite, albite and iron oxide. Metasomatism changed rock forming minerals but most of clinopyroxenes are fresh compared to other minerals. Mineral chemistry of clinopyroxene is used for recognition of magma nature and tectonic settings of parent magma of the Hormoz Formation. The average composition of clinopyroxens of Gachin salt dome is augite (Wo27.66 En45.44 Fs26.91), clonopyroxens of Hormoz Island salt dome is augite –diopsid (Wo43.36 En32.71Fs23.93). These minerals are Ca-Eskola. Geochemical diagrams based on clynopyroxens composition show that the background of Hormoz salt dome samples are volcanic arc basalts and Gachin salt dome samples are intraplate tholeiitic basalts and they had sub-alkaline nature. Their forming temperatures of clinopyroxens are 875oc for Hormoz clinopyroxenes and 997oc for Gachin clinopyroxenes and forming pressure is less than 2kb.
• احمدزاده، م، هوشمندزاده، ع.ا. و نبوي، م. ح.، 1369. مجموعه مقالات سمپوزيوم دياپيريسم با نگرشي ويژه به ايران، جلد اول، 1-22.
الیاسی، ج.، امین سبحانی، الف.، بهزاد، ع.، معین وزیری، ح. و میثمی، ع.، 1355. زمین شناسی جزیره هرمز. مجموعه مقالات دومین سمپوزیوم زمین شناسی انجمن نفت ایران، 31-72.
تقی پور، ص.، 1386. مطالعات کانی شناسی و پترولوژیکی مجموعه های آذرین - تبخیری گنبدهای نمکی زاگرس بلند (استان چهارمحال بختیاری). پایان نامه کارشناسی ارشد، دانشگاه اصفهان، 123.
جعفری صدر، ع.، 1370. زمین شناسی و پترولوژی مجموعه های آذرین و دگرگونی گنبد نمکی گچین (بندر عباس). پایان نامه کارشناسی ارشد، دانشگاه تهران، 145.
درويش زاده، ع.، 1369. مجموعه مقالات سمپوزيوم دياپيريسم با نگرشي ويژه به ايران، جلد اول، 81-108.
سبزه ای، م.، 1368. گزارش بررسی های زمین شناختی و سنگ شناختی گنبدهای کاکان, کمهر و کوه گون در منطقه یاسوج. اداره کل معادن وفلزات استان کهگیلویه و بویراحمد، گزارش داخلی، 70.
فخاری، م.، 1374. نقشه 1.250،000 بندر عباس، جهت اخذ درجه دکتری تکتونیک دانشگاه آزاد اسلامی. شرکت ملی نفت ایران بخش اکتشافات زمین شناسی.
مرادی، م.، 1382. تحولات پترولوژیکی واحدهای آذرین گنبدهای نمکی سواحل و جزایر خلیج فارس. پایان نامه دکتری،دانشگاه تهران، 262.
نبوي، م. و سبزه اي،م.، 1367. نگرشي بر سازند هرمز و الگويي نو براي تشکيل گنبد هاي نمکي در جنوب ايران. گزارش سازمان زمين شناسي و اکتشافات معدني کشور، 16.
Akinin, V. V., Sobolev, A. V., Ntaflos, T. and Richter, W., 2005. Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Rissia): application to composition and evolution of mantle melts, contributions to Mineralogy and Petrology, 150, 85-101.
Arvin, M., 1991. Clinopyroxene composition and genesis of basalts from coloured series and exotic blocks in the Neyriz area (southern Iran): A composition with haybi complex of Oman. Journal of Sciences Islamic Republic of Iran, winter & spring,vol. 2, No. 1, 2 .
Azomov. P. Ya. And Bushmin, S. A., 2007. Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solution of varying acidity: Thermodynamic modeling at 400-800oC and 1-5 Kbar, Geochemistry International, Vol. 45, No. 12, 1210-1234.
Blanford, W. T., 1972, Note on the geological formations seen along the coasts of Bondar, R. J., and Vityk, M. O., 1997, Interpretation of micro thermometric data for H2O-NaCl fluid inclusion in minerals: methods and applications short course of the working groups (IMA), inclusions of minerals, 117-130.
Bence, A. E., Papike, J. J. and Ayuso, R. A., 1975. Petrology of atlantic island arcs. Bulletin of Volcanology, 32, 189-206.
Cathy, H. E. and Nash, B. P., 2009. Pyroxene thermometry of rhyolite lavas of Bruneau-Jarbidge eruptive center, Central Snake River Plain, Journal of Volcanology and Geothermal Research, 188, 173-185.
Coish, R. A., Taylor, L. A., 1979, The effects of cooling rate on texture and pyroxene chemistry in OSDP leg 34 basalt: a micriorobe study, Earth and Paleontology science latters, 42, 389-398.
Damascene, D., Scoates, J. S., Weis, D., Frey, F. A. and Giret, A., 2002. Mineral chemistry of midly alkali basalts from the 25 Ma Mont Crozier Section, Kerguelen Archipelago, constraints on phenocryst crystallization environments. Journal of Petrology, 43(7), 1389-1413.
Frey, M., 1987, Low temperature metamorphism, Chapman & hall. Gass, J. G., 1973, Intrusion, extrusion & metamorphism at constructive margins, Nature, v., 242, 522-545.
Johnson, KTM. and Dick, HJB., 1992. Melting in oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 92, 2661-2678.
Le Bass, M. J., 1962, The role of aluminum in igneous clinopyroxene with relation to their parentage. American Journal of Science, 260, 267-288.
Leterrie, S., Maury, C. R., Thonon, P., Girard, D. and Morchal, M., 1982. clinopyroxen composition as method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science letter, 51, 139-154.
Mollo, S., Del Gaudio, P., Venturea, G., Lezzi, G. and Scarlato, P., 2010. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry, Lithos, 118, 302-312.
Mordic,B.E. and Glazner.A.F., 2006.Clinopyroxene thermometry of basalts from the Coaso and Big Pine volcanic fields, California, contributions to Mineralogy and Petrology,152,111-124.
Morimoto, N., 1989, Nomenclature of pyroxene, Canadian Mineralogist, 27, 143-156.
Nimis, P. and Taylor, W. R., 2000. Single clinopyroxene thermometry for garne peridotites, part 1, calibration and testing of cr-in-cpx barometer and an enstatite-in-Cpx thermometer contributions mineral petrology, 541-550.
Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings, Contributions to Mineralogy and Petrology, 63. 149-160.
O'Learly, J. A., Gaetani, G. A. and Hauri, E. H., 2010. The effect of tetrahedral Al3+on the partitioning of water between clinopyroxene and silicate melt, Earth and Planetary Science Letters, 297, 110-120.
Pearce, J. A. and M. J. Norry, 1979. Petrogenetic implication of Ti, Zr, Y, and Nb variation in volcanic rocks. contributions to Mineralogy and Petrology, 69: 33-47.
Rogers, A. J. and Grutter, H. S., 2009. Fe-rich and Na-rich megacryst clinopyroxene and garnet from the Luxinga klmberlite cluster, Lunda Sul, Angola, Lithos, 1125,942-950.
Rollinson, H. R., 1993, Using geochemical data: evaluation, presentation, interpretation, Longman Scientific and Technical, UK. 352.
Sazonova, L. V., Nosova, A. A. and Narkosova, V. V., 2001. Zoning of clinopyroxenes from volcancs by the example of the Devonian basaltoids of the Magnitogorsk Trough, South Ural. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva , 130(6), 80-95.
Shao, J., Fengying, G. and Zhang, L., 2000, Coupling of mantle-upwelling and shearing Mesozoic dyke swarms in Da-Hinggan Mountains, northeast China.31STInternational Geological congress, August 6-17, 2000, Episodes, Vol.21, no. 2.
Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxen composition: empirical coordinates for the crystallisation PT estimations. geological Society of Sweden (Geolodiska Foreningen) 119055-60.
Stone, S. and Niu, Y., 2009. Origin of compositionalternds in clinopyroxene of oceanic gabbros and gabbroic rocks: A case study using data from ODP Hole 735B, Journal of Volcanology and Geothermal research 189, 313-322.
Talbot,C., Aftabi,Pedram.,Chemia, zurab., 2009, potash in a salt mushroom at hormoz Island, hormoz strait, Iran, Ore Geology Reviews, vol.35, issues.3, 317-332.
Viten, K. and Hamm, H., 1978. Additional notes on calculation of the crystal chemical formula of clinipyroxene and their content of Fe3+ from microprobe analysis, Monoatshefte, Neues. Jahrb. Mineral., 71-83.
Walthman, T., 2008. Salt terrains of Iran, Geology Today, Vol. 24, Issue, 5, 188-194.
Wass, S. Y., 1979. Multiple origins of clinopyroxenes in alkalin basaltic rocks. Lithos12.115-132.
Wen, S., Zhendong, Y., Ruchengz, W, and Xianwen, L., 2001. Quartz and clinoenstatite exsolutions in clinopyroxene of garnet-pyroxenolite from the North Dabie Mountains, estern china, Chinese Science Bulletin, Vol. 46, No. 17, 1482-1492.