ژئوشیمی رخساره¬های کانه¬دار و پهنه¬بندی دگرسانی در کانسار سولفید توده¬ای آتشفشانزاد باریت- سرب- مس ورندان، جنوب¬غرب قمصر
محورهای موضوعی :فایق هاشمي 1 , فردین موسیوند 2 , مهدی رضایی کهخائی 3
1 - دانشگاه صنعتی شاهرود
2 - دانشگاه صنعتی شاهرود
3 - دانشگاه صنعتی شاهرود
کلید واژه: باریت- سرب- مس سولفید توده¬, ای آتشفشا¬, ن¬, زاد کوروکو ژئوشیمی الکترون میکروپروب (EPMA) ورندان, قمصر.,
چکیده مقاله :
کانسار سولفید توده ای آتشفشانزاد باریت- سرب- مس ورندان در جنوب غرب قمصر و در کمان ماگمائی ارومیه- دختر واقع شده است. کانه زائی در کانسار ورندان بهصورت چهار زیرافق کانه دار و در واحد 1 (عمدتاً شامل توف های اسیدی و آندزیت) توالی آتشفشانی- رسوبی میزبان با سن ائوسن میانی- بالائی رخ داده است. رخساره های متمایز شده در این کانسار شامل: 1) رگه- رگچه ای، 2) مجموعه های برشی دهانه ای، 3) توده ای، 4) لایه ای- نواری و 5) رسوبات گرمابی- بروندمی آهن و منگنزدار می باشند. دگرسانی عمده در سنگ دیواره از نوع کلریتی- سیلیسی و سیلیسی- سریسیتی می باشد. دگرسانی کلریتی- سیلیسی همراه با رخسارههای استرینگر و برشی در کمرپایین زیر افقهای معدنی و در مرکز سیستم وجود دارد و دگرسانی سیلیسی- سرسیتی در اطراف بخش کلریتی زیرافقهای معدنی و همچنین به همراه باریت قرار گرفته است. آنالیز الکترون میکروپروب برروی کانی های کلریت از کمرپایین (رخساره های استرینگر) زیرافق دوم و سوم نشان می دهد که این کلریت ها در رده کلریت های غنی از آهن و نزدیک به قطب کلینوکلر هستند که با ویژگی های کلریت در پهنه های دگرسانی کانسارهای سولفید توده ای آتشفشانزاد مطابقت نشان می دهند. بررسی های ژئوشیمیایی رخساره های کانه دار نشان می دهد که میزان عناصر Ag، As، Cu، Sb و Sr در بخش چینه سان (لایه ای- نواری و توده ای) زیرافق سوم خیلی بالاتر از زیرافق های دیگر بوده و بطورمیانگین به ترتیب برابر 41، 273، 1945، 390 و 1013 ppm می باشند. در مجموع مطالعات ژئوشیمیایی نشاندهنده وجود پهنه بندی فلزی در این کانسار است که از ویژگی های کانسارهای VMS است. پهنه بندی فلزی ناشی از نفوذ سیالات داغ مس دار می تواند از گسترش پدیده پالایش پهنه ای و رخداد فراپالایش باشد که نتیجه آن شستشوی دوباره مس توسط سیال داغ گرمابی از مجموعه دهانه ای و ته نشست آن در داخل رخساره لایه ای- نواری می باشد. از میان رخساره های مختلف زیرافق های کانه دار کانسار ورندان، رخساره لایه ای- نواری زیرافق سوم برای استخراج عناصر کمیاب از جمله نقره می تواند دارای ارزش اقتصادی باشد.
The Varandan Ba-Pb-Cu deposit is located in southwest of Qamsar which is part of Urumieh-Dokhtar magmatic-arc zone. Mineralozation occurred as four sub-horizons in the unit1 of volcaniclastics and volcanics (acidic tuff and andesite) of Middle-Late Eocene. Each sub-horizon consists of five ore facies including: 1) stringer zone, 2) vent complex zone, 3) massive zone, 4) bedded-banded zone and 5) hydrothermal-exhalative sediments of Fe and Mn bearing. Main wall rock alterations in the deposits include chloritic-quartz and quartz-sericitic. Alteration zoning is observed in the deposit as chloritic-quartz at the core and quartz-serisitic in the margins of the footwall of the ore sub-horizon. Electron microprob analysis (EPMA) on the chlorite in stringer zones of the second and third sub-horizons show that these chlorites are Fe-rich chlorite and close to the clinochlor field. Geochemical studies indicate that grades of Ag, As, Cu, Sb and Sr in the stratiform ore (bedded-banded and massive) of the third sub-horizon are much higher than the other sub-horizons, and are 41, 273, 1945, 390 and 1013 ppm, respectively. All geochemical studies show that metal zoning in this deposit is clear, this is characteristic of VMS deposits. Development of zone-refining and over refining processes caused leaching of Cu from the stringer zone and vent complex facies and its later precipitation in the bedded ore facies. Among across to different sub-horizons in the Varandan deposit, third sub-horizon is recognized as economic for Ag extraction .
ایزدی، ح.، 1375. برسی زمین¬شناسی، سنگ¬شناسی و ژنز باریت- سرب قزاآن قمصر کاشان. پایان نامه کارشناسی ارشد، دانشگاه آزاد، واحد شمال، 160.
آقانباتی، س. ع.، 1383. زمین¬شناسی ایران. سازمان زمین¬شناسی واکتشافات معدنی کشور، 400.
خلج معصومی، م.، لطفی، م. و نظری، م.، 1389. تعیین مدل کانی سازی معدن تپه سرخ بیجگان دلیجان -استان مرکزی. فصلنامه تخصصی زمین و منابع، سال اول، 2، 33-43.
رادفر ج.، علایی مهابادی، س. و هاشم¬امامی، م.، 1372. نقشه زمین¬شناسی100000/1 کاشان. سازمان زمین¬شناسی و اکتشافات معدنی کشور.
شرکت مهندسین مشاور تحقیقات معدنی خاک کوب.، 1370. شرح نقشه زمین¬شناسی1:20000 منطقه قهرود (کاشان)، وزارت معادن و فلزات.
عمیدی، م.، هاشم امامی، م. چ. و زوهره¬بخش، م. ا.، 1359. نقشه زمین¬شناسی مقیاس 250000/1 کاشان. سازمان زمین¬شناسی و اکتشافات معدنی ایران.
فرخ¬پي، ه.، شمسي پور، ر. و نصر اصفهاني، ع.، 1389. پترولوژی اقتصادی توده نفوذی ورندان قزاآن: برسی ذخایر فلزی. دانشگاه آزاد اسلامی واحد خوراسگان. همایش پترولوژی کاربردی، 1-7.
نظری، م.، یعقوب پور، ع. و مدنی، ح.، 1370. کانسار باریت درین کاشان. دانشگاه تربيت معلم، چهارمین سمپوزیوم معدنکاری ایران. 106- 125.
هاشم امامی، م. چ.، 1359. نقشه زمین¬شناسی مقیاس 250000/1 آران. سازمان زمین¬شناسی و اکتشافات معدنی ایران.
هاشمی، ف.، موسیوند، ف. و رضایی کهخائی، م.، 1396. افق های کانه¬دار، رخساره¬های کانسنگ، ژئوشیمی و الگوی تشکیل کانسار سولفید توده-ای آتشفشانزاد (VMS) باریت- سرب- مس ورندان جنوبغرب قمصر. مجله زمین¬شناسی اقتصادی مشهد، 2 (9)، 587-616.
Almodovar, G.R., Saaez, R., Pons, J.M., Maestre, A., Toscano, M. and Pascual, E., 1997. Geology and genesis of the Aznalco llar massive sulphide deposits, Iberian Pyrite Belt, Spain. Mineralium Deposita. 33 (1-2), 111-136.
Bailey, S.W., 1980. Summary of recommendations of AIPEA nomenclature committee. Clay Minerals, 15, 85-93.
Barriga, F.J.A.S. and Fyfe, W.S., 1997. Multi-phase water-rhyolite interaction and ore fluid generation at Aljustrel, Portugal. Mineralium Deposita. (1-2), 188-207.
Bayliss, P., 1975. Nomenclature of the trioctahedral chlorites. The Canadian Mineralogist, 13, 178-180.
Belkabir, A., Gibson, H.L., Marcoux, E., Lentz, D. and Rziki, S., 2008. Geology and wall rock alteration at the Hercynian Draa Sfar Zn–Pb–Cu massive sulphide deposit, Morocco. Ore Geology Reviews, 33, 280-306.
Brindley, G.W. and Gillery, F.H., 1956. X-ray identification of chlorite species. The American Mineralogist, 41, 169-186.
Cagatay, M.N., 1993. Hydrothermal alteration associated with volcanogenic massive sulfide deposits; examples from Turkey. Economic Geology, 88, 606-621.
Doyle, M.G. and Allen, R. L., 2003. Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geology Reviews, 23, 183-222.
Fleischner, M., 1971. Glossary of Mineral Species. Mineralogical Record, Maryland, 103.
Foster, M.D., 1962. Interpretation of the Composition and a Classification of the Chlorites: US Geological Survey Professional, 414.
Franklin, J.M., Harrington. M.D., Jonasson, I.R. and Barrie, C.T., 1998. Volcanogenic massive sulfide deposits. Canada Geological Survey, 33, 175–192.
Gaboury, D. and Pearson, V., 2008. Rhyolite geochemical signatures and association with volcanogenic massive sulfide deposits: examples from the Abitibi Belt, Canada. Economic Geology, 103, 1531-1562.
Galley, A.G., Hannington, M.D. and Jonasson, I., 2007. Volcanogenic massive sulphide deposits. Journal of Mineral Deposits of Canada, 5, 141-161.
Gemmell, j.B., Large, R.R. and Zaw, K., 1998. Palaeozoic volcanic hosted massive sulfide deposits. Journal of Australian Geology and Geophysics, 17, 129-138.
Gibson, H.L. and Kerr, D.J., 1998. Giant VMS deposits: with emphasis on Archean deposits. 5th annual short course of magmatism, volcanism and Metallogeny. Occidental-Brest University, Bretagne, France.
Goodfellow, W.D. and Peter, J. M., 1996. Sulphur isotope composition of the Brunswick No. 12 massive sulphide deposit, Bathurst Mining Camp, N.B.:Iimplications for ambient environment, sulphur source and ore genesis: Canadian Journal of Earth Sciences, 33, 231-251.
Goodfellow, W.D., 2004. Geology, genesis and exploration of SEDEX deposits, with emphasis on the Selwyn Basin, Canada. Attributes and models of some major deposits in India, Australia and Canada: New Delhi, Narosa Publishing House, 24-99.
Haninngton, M.D., Poulsen, K.H., Thopson, J.F.H. and Sillitoe, R.H., 1999. Volcanogenic gold in the massive sulfide environment. Journal of Society of Economic Geologists, 8, 319-3550.
Hashemi, F., Mousivand, F. and Rezaei-kahkhaei, M., 2014. Volconogenic massive sulfide mineraliztion in the Kashan-Delijan region, Iran. First International Workshop on Tethyan Orogenesis and Metallogeny in Aisa, October12‐16, CUG University, Wuhan, China. 21-25.
Hey M.H., 1954. A new review of the chlorites. Mineralogical Magazine., 30, 277-292.
Lapham, D.M., 1958. Structural and chemical variation in chromium chlorite. American Mineralogist, 43 (9-10), 921-956.
Large R.R., 1992. Australian Volcanic-hosted Massive Sulfide Deposits: Features. Styles, and Genetic Models. Economic Geology. 87 (3), 471-510.
Large, R.R., Gwemmell, J.B., Paulick, H. and Huston, D.L., 2001. The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Journal of Economic Geology, 96, 957-971.
Leistel, J.M., Bonijoly, D., Braux, C., Freyssinet, Ph, Kosakevitch, A., Leca, X., Lescuyer, J.L., Marcoux, E., Mile si, J.P., Piantone, P., Sobol, F., Tegyey, M., ThieÂblemont, D. and Viallefond, L., 1994. The Massive Sulphide Deposits of the South Iberian Pyrite Province, Geological Setting and Exploration Criteria. Editions BRGM, 234.
Lobanov, K. and Gaskov, I., 2012. The Karchiga copper massive sulfide deposit in the high-grade metamorphosed rocks of the Kurchum block: geologic structure, formation, and metamorphism (Rudny Altai). Journal of Russian Geology and Geophysics, 53, 77-91.
Nelson, J., Paradis, S., Christensen, J. and Gabites, J. 2002. Canadian Cordilleran Mississippi Valley-type deposits: A case for Devonian-Mississippian back-arc hydrothermal origin. Economic Geology, 97, 1013-1036.
Ohmoto, H., 1996. Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Journal of Ore Geology Reviews, 10, 135-177.
Ohmoto, H. and Skinner, B.L., (Eds.). 1983. The Kuroko and Related Volcanogenic Massive Sulfide Deposits. Economic Geology Publishing Company, 604.
Orcel J., 1926. Essai de classification des chlorites. Academy of Sciences (Paris) Comptes Rendus, 183, 363-582.
Orcel, J., Calli`ere M. S. and Henin S., 1950. Nouvel essai de classification des chlorites. Mineralogical Magazine, 29: 329-340.
Pašava, J., Vymazalová, A., Petersen, S. and Herzig, P., 2004. PGE distribution in massive sulfides from the PACMANUS hydrothermal field, eastern Manus basin, Papua New Guinea: implications for PGE enrichment in some ancient volcanogenic massive sulfide deposits. Mineralium Deposita, 39, 784-792.
Plimer, I.R., carvalho, D., 1982. The geochemistry of haydrothermal alteration at the Salgadinho copper deposit, Portugal. Mineralogical Deposita. 17, 193-211.
Relvas, J.M., Barriga, F.J., Ferreira, A., Noiva, P.C., Pacheco, N. and Barriga, G., 2006. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. I. Geology, mineralogy, and geochemistry. Economic Geology, 101, 753-790.
Sánchez-España, J., Velasco, F. and Yusta, I., 2000. Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain). Applied Geochemistry, 15, 1265-1290.
Serdyuchenko, D.P., 1953. Khlority, ikh khimicheskaya konstitutsiya i klassifikatsiya. Trudy Institute Geology Nauk. AN SSSR, 140.
Strauss, C.K., Roger, G., Lecolle, M. and Lopera, E., 1981. Geochemical and geologicalstudy of the Volcano- Sedimentary orebody of La Zarza, Huelva Province, Spain. Economic Geology. 76, 1975-2000.
Toscano, M., Almodovar, G.R., Saez, R. and Pascual, E., 1993. Hydrothermal alteration reated to the Masa Valverde massive sulfide deposit, Iberian Pyrite Belt, Spain. In: Fenoll Hach-Ali P, Torres-Ruiz J, Gervilla F. (Eds.), Current research in geology applied to ore deposits. University of Granada, Spain, 389-392.
Toscano, M., Almodovar, G.R., Saez, R. and Pascual, E., 1994. Variacion composicional de las sericitas de alteration hydrotermal en sulfuros masivos Masa Valverde (Huelva). Boletin Sociedad Espanola de Mineralogia. 17, 161-162.
Tschermak, G., 1890. Die Chloritgruppe. Sitzungsber Kaiserlichen Akademie Wissenschaften Wiena Abstract. I, 99, 174-266.
Tschermak, G., 1891. Die Chloritgruppe. Sitzungsber Kaiserlichen Akademie Wissenschaften Wiena Abstract. I, 100, 29-107.
Urabe, T. and Scott, S.D., 1983. Geology and footwall alteration of south bay massive sulfide deopsit, northwestren, Ontario, Canada. Canadian Journal of Earth Sciences. 20 (12), 1862-1879.
Weiss, Z., 1991. Interpretation of chemical composition and X-ray diffraction patterns of chlorites. Geologica Carpathica, 42, 2: 93-104.
Wiewiora A and Weiss Z., 1990. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Minerals, 25: 83-92.
Winchell, A.N., 1936. A Third Study of Chlorite. American Mineralogist, 21, 642-651.
Zane, A. and Weiss, Z., 1998. procedure for classifying rock-forming chlorites based on microprobe data. Accademia the Rendiconti Lincei. Scienze Fisiche e Naturali, 9, 51-56.