بررسی ژئوشیمی و کانی¬شناسی سنگ¬های آداکایتی روستای منور، شمال تبریز (شمال¬غرب ایران)
محورهای موضوعی :مهدیه فاضلی حق 1 , نصیر عامل 2 , احمد جهانگیری 3
1 - دانشگاه تبریز
2 - دانشگاه تبریز
3 - دانشگاه تبریز
کلید واژه: سنگ¬, های آداکایتی پوسته ضخیم شده بعد تصادم منور تبریز ,
چکیده مقاله :
منطقه مورد مطالعه در 35 کیلومتری شمال غرب تبریز واقع شده است. بر اساس شواهد چینه ای سنگ-های آتشفشانی منطقه منور، سنی از میو- پلیوسن تا پلیو- کواترنری داشته و از نظر زمین شناسی ساختاری بخشی از زون البرز باختری – آذربایجان به شمار می روند. سنگ های آتشفشانی بیشتر از نوع داسیت، ریوداسیت، آندزیت، آندزیت بازالت و تراکی آندزیت می باشند. در نمودارهای عنکبوتی، این سنگ ها غنیشدگی از عناصر LREE و LILEنسبت به HREE و HFSE، تهی شدگی و آنومالی منفی Ti، Nb و Ta (TNT) و نسبت های بالای Ba/Nb و Ba/Ta را نمایان می سازند که نشانگر شکل گیری آنها در قوس های قاره ای و قوس های بعد از تصادم هستند. مقادیر بالای SiO2 برابر با 55 تا 66 درصد وزنی و پایین بودن مقادیر MgO، Y و Yb و نسبت های بالایSr/Y و La/Yb بیانگر شکل-گیری آنها از یک ماگمای آداکایتی پرسیلیس در منطقه است. با وجود این شواهد و بررسی الگوهای پراکندگی عناصر نادر خاکی نشان دهنده تشکیل ماگما از ذوب بخشی پوسته ضخیم شده پس از برخورد است.
The study area is located 35 kilometers northwest of Tabriz. Based on stratigraphic evidences, age of volcanic rocks in Monavvar area is Mio-Pliocene and Plio – Quaternary. According to geological structure, it is part of the western Alborz – Azerbaijan zone. Most of the volcanic rocks are dacite, rhyodacite, andesite, basaltic andesite and trachyandesite. In the spider diagrams these rocks show enrichment of HREE and HFSE elements over LREE and LILE, depletion and negative anomalies for Ti, Nb and Ta (TNT) and Ba/Nb, Ba/Ta. These properties indicate that their formation could occur in the continental arcs and post collisional arcs. High levels of SiO2 equal to 55 to 66 %wt, low levels of MgO, Y, Yb and Sr/Y and La/Yb represent the formation of high silica adakitic magma in the region. According to this evidence and REE distribution patterns, formation of magma was probably from asthenospheric mantle garnet – lherzolite source.
- جلیلیان، ع.، افشاریان زاده، ع. م.، 1372. نقشه 1:100000 تبریز، سازمان زمین¬شناسی کشور.
- عامل، ن.، 1386. پترولوژی و پتروژنز سنگ¬های ماگمایی پلیو- کواترنر آذربایجان (شمال¬غرب ایران). رساله دکتری، دانشگاه تبریز، 188.
- عامل، ن.، مؤید، م.، عامری، ع.، وثوقی عابدینی، م و مؤذن. م.، 1387. سنگ¬زایی بازالت¬های پلیو- کواترنری آذربایجان (شمال¬غرب ایران) و مقایسه آنها با بازالت¬های مشابه در شرق ترکیه. مجله بلورشناسی و کانی شناسی ایران، 327 - 340.
- Alishah, F and Jahangiri, A., 2013. Post- collisional Pliocene to Pleistocene adakitic volcanism in Sahand region in Northwest Iran: Geochemical and geodynamic implications. Physical Sciences Research International ,1, 62- 75.
- Atherton, M.P and Petford, N., 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362, 144– 146.
Blatt, H. and Tracy, R., 1995. Petrology: Igneous, Sedimentary and metamorphic. W. H., Freeman book Company, New York.
Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry, Elsevier, pp: 63–114.
- Castillo, P.R., Janney, P.E and Solidum, R.U., 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petro, 134, 33–51.
- Defant, M.J and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted. lithosphere Nature, 367, 662–665.
- Guo, F., Nakamuru, E., Fan W., Kobayoshi, K., Li and C., 2007. Generation of Palaeocene adakitic and esites by magma mixing; Yanji Area, NE China. J. Petrol 48, 661–692.
- Jahangiri, A., 2007. Post-collisional Miocene adakitic volcanism in NW Iran:Geochemical and geodynamic implications. Journal of Asian Earth Sciences 30, 433–447.
- Jean, F.M., 2009. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos, 112, 556-574.
- Kuno, H., 1968. The Poldervaart treatise on rocks of basaltic compositions. Interscience, New York 2, 623-688.
- Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411–429.
- Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F and Champion, D., 2005. An overview of adakite, tonalite – trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79, 1–24.
- Middlemost, E. A. K., 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37, 215–224.
- Muller, D and Groves, D.I., 1997. Potassic Igneous rocks and associated gold-copper ineralization. Earth Sciences, 56: 238.
- OrhanKarsli, O., Dokuz, A., Uysal, O., Aydin, F., Kandemir, R and Wijbrans, J., 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: Implications for crustal thickening to delamination. Lithos, 114, 109–120.
- Peacock, S.M., Rushmer, T and Thompson, A.B., 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121, 227-244.
- Pearce, J.A., 1983. The role of subcontinentallithosphere magma genesis at destruction platemargin, In continental basalts and mantle Xenolites.
- Pearce, J.A and Cann, J.R., 1973. Tectonic setting of basic volcanic rocks determind using trace element analysis. Earth and Planetary Science Letters, 19: 200-290.
- Pearce, J.A and Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251–285
- Pearce, J.A., Bender, S.E., DeLong, W.S.E., Kidd, P.J., Low, Y., Guner, F., Saroglu, Y., Yilmaz, Y., Moorbath, J.G and Mitchell, J.F., 1990. Genesis of collision volcanism in eastern Anatolia Turkey. J. Volcanol. Geotherm Research, 44, 189-229.
- Petrone, C.M., Francalanci, L., Ferrari, L., Schaaf, P and Conticelli, S., 2006. The San Pedro–Cerro Grande Volcanic Complex (Nayarit, Mexico): inferenceson volcanology and magma evolution ", in: SiebeC, Aguirre-Déaz G, Macéas JL (eds) Neogene-Quaternary continental margin volcanism: aperspective form Mexico. Geological Society of America, 402, 65–98.
- Rapp, R., Yaxley, G., Norman, M.D and Shimizu, N., 2007. Comprehensive trace element characteristics of experimental TTG and sanukitoid melts, Sixth International Hutton Conference on the Origin of Granitic Rocks. Stellenbosch, South Africa.
- Rollinson, H.R and Tarney, J., 2005. Adakites- The key to understanding LILE depletion in granulites. Lithos, 79, 61-81.
- Shandle, E.S and Gorton, M.P., 2002. Application of high field strength elements to discriminate tectonic setting in VMS environment. Economic geology, 97, 629-642.
- Stern, R.A and Hanson, G.N., 1991. Archean high-Mg granodiorite: a derivative of light rare earth elementen riched monzodiorite of mantle origin, J. Petrol, 32, 201–238.
- Stern, C.R and Kilian, R., 1996. Röle of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral volcanic zone. Contributions to Mineralogy and Petrology, 123, 263–281.
- Sun, S.S and MC Donough, W.F., 1989. Chemical andisotopic systematics of oceanic basalts: implications for mantle composition andprocesses. In: Saunders, AD. And Norry, M.J (eds), Magmatism in oceanic basins, Geological Society of London Special Publication, 42, 313-345.
- Wang, Q., Xu, J., Jian, P., Bao, Z., Zhao, Z., Li, C and Xiong, X., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Jouranl of Petrology, 47, 119–144.
- Winchester, J.A and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.
- Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q and Rapp, R.P., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust. Geology, 30, (12), 1111–1114.