برآورد سطح زیرکشت گندم دیم با استفاده از تصاویر ماهواره ای سنتينل2 (مطالعه موردی: منطقه سجاسرود شهرستان خدابنده استان زنجان)
محورهای موضوعی : سنجش از دور و جغرافیای زیستیسید احمد موسوی 1 , نادیا عباس زاده طهرانی 2 , میلاد جانعلی پور 3
1 - سنجش از دور و سیستم اطلاعات جغرافیایی، واحد الکترونیکی دانشگاه آزاد اسلامی، تهران، ایران
2 - پژوهشگاه هوافضا وزارت علوم تحقیقات و فناوری
3 - پژوهشگاه هوافضا وزارت علوم تحقیقات و فناوری
کلید واژه:
چکیده مقاله :
كشت و توليد محصول گندم همواره پاسخگوي نيازهاي تغذيه اي بخش عظيمي از مردم جهان بوده است، لذا در ايران و جهان ازجمله محصولات کشاورزی استراتژيك محسوب میشود. در اختیار داشتن آمار و اطلاعات مناسب از سرزمين هاي تحت كشت گندم و برآورد ميزان دقيق توليد آنها در يك سال زراعي، به برنامه ريزان بخش كشاورزي و صنعت جهت مدیریت هرچه مؤثرتر تولید و مصرف محصول مذکور، كمك شاياني مي نمايد. یکی از ابزارهایی که در کمترین زمان و با هزینه پایین و دقت مناسب میتواند سطح زیر کشت گندم را محاسبه نماید علم و فناوری سنجشازدوراست. در تحقیق حاضر، با استفاده از کلاسهبندی نظارتشده تصاویر چند زمانه سنجنده سنتينل 2، سطح زیر کشت گندم و میزان تولید آن در دهستان سجاسرود از توابع شهرستان خدابنده استان زنجان برای سال زراعی 96-97 برآورده شده است. طبقهبندی نظارتشده با دقت کلی80% و ضریب کاپای 8/0 نتایج قابلقبول و مناسبی برای شناسایی و تفکیک گندم از سایر محصولات كشاورزي را ارائه مي دهد.
Wheat is one of the strategic agricultural products which provides one of the most basic nutritional needs of human societies for Iran and the whole world. Having the right statistics and information of the lands under wheat cultivation and estimating the amount of their production in one crop year can help the planners of agriculture and industry to manage the production and consumption of the mentioned product as effectively as possible. One of the tools that can calculate the level of wheat cultivation in the shortest time and with low cost and appropriate accuracy is the science and technology of remote sensing. In the present study, using a supervised classification of images from several time of Sentinel 2, the area under wheat cultivation and its production rate for the 96-97 crop year has been estimated. Supervised classification with the overall accuracy of 80% and a kappa coefficient of 0.8 has acceptable and suitable results for the identification and separation of wheat from other agricultural crops.
