مقایسه کاربرد ضایعات نانو و میکرو به عنوان منبع تامین کننده¬ی روی در کشت هیدروپونیک خیار
محورهای موضوعی :سحر مقدسی بروجنی 1 , فتح اله کریم زاده 2
1 - صنعتی اصفهان
2 - صنعتی اصفهان
کلید واژه: خیار روی نانو ذرات لاستیک,
چکیده مقاله :
پژوهش های پیشین نشان دادند خاکستر ضایعات لاستیک و نانو ذرات آن منبع مناسبی از روی برای گیاه هستند. در پژوهش حاظر سعی بر آن شده تا ضمن امکان کاربرد ضایعات لاستیکی و نانو ذرات آن به به عنوان منبع تامین کننده روی گیاه و مقایسه آن با کود سولفات روی تجاری موجود در بازار سرنوشت نهایی نانو ذرات در گیاه مورد بحث و بررسی قرار گیرد. به این منظور ضمن تولید نانو ذرات و مشخصه یابی آن با میکروسکوپ الکترونی روبشی و عبوری، این ضایعات در کشت هیدروپونیک خیار به کار گرفته شده و عملکرد کمی و کیفی محصولات تغذیه شده با نانو ذرات تولیدی، ذرات میکرونی لاستیک و نیز کود سولفات روی تجاری موجود در بازار مقایسه گردید. بر اساس نتایج بدست آمده با کوچک شدن اندازه ذرات لاستیک از میکرون به نانو درصد روی قابل عصاره گیری به طور معنی داری افزایش یافت. نتایج این پژوهش نشان داد استفاده از لاستیک و نانو ذرات حاصله سبب افزایش عملکرد گیاه ضمن افزایش غلظت روی گیاه در مقایسه با کود سولفات روی تجاری موجود در بازار و نیز تیمار شاهد می گردند.
It has recently been shown that rubber can be used as an effective source of zinc (Zn) and some other nutrients for crops. According to the previous results, rubber particles size is a key factor determining the rate of micronutrient release from the rubber wastes. In this study, different treatments were applied to synthesis Zn nano-particles from waste tire rubber. According to the results obtained, nano-zinc particles synthesized from waste tire rubber offer strong value as Zn fertilizer for cucumber grown in the nutrient solution culture. The cucumber seedlings grown in nutrient solution containing nano-Zn particles had higher shoot growth and accumulated higher amounts of Zn in their tissues compared with those grown in control and ZnSO4-containing nutrient solution.
خوشگفتار¬منش، ا. ح. و آ. سنایی استوار، 1388. قابلیت استفاده روی موجود در ضایعات صنعتی پلیمری شده برای ذرت در یک خاک آهکی، علوم و فنون کشاورزی و منابع طبیعی، سال سیزدهم، 50: 91-103.
حمزه¬پور، ن.، م. ملکوتی و ع. مجیدی، 1389. برهمکنش عناصر روی، آهن و منگنز در اندام¬های مختلف گندم، مجله پژوهش¬های خاک، 24 :1-8.
Chaney, R. L. 2007. Effect of ground rubber vs. ZnSO4 on spinach accumulation of Cd from Cd-mineralized California soil. Abstract, WEFTECH Residuals Conference, Denver, CO, April.
Taheri, S., A. H. Khoshgoftarmanesh and H. Shariatmadari. 2011. Kinetics of zinc release from ground tire rubber and rubberash in a calcareous soil as alternatives to Zn fertilizers. Plant Soil. 341: 89–97.
Afyuni, M., A. H. Khoshgoftarmanesh, V. Dorostkar and R. Moshiri. 2007. Zinc and cadmium content in fertilizers commonly used in Iran. International Conference of Zinc Crops, Istanbul, Turkey 24-28.
Carpita, N., D. Sabularse, D. Montezinos and D. P. Delmer. 1979 Determination of the pore size of cell walls of living plant cells. Science .205: 1144–1147.
Remya, N., H. V., Saino, G. Baiju, T. Maekawa, Y. Yoshida and D. Sakthi Kumar. 2010. Nanoparticulate material delivery to plant, Plant sci. 179: 154-163.
Lin, D. H and B. S. Xing. 2007. Phytotoxicity of nanoparticles. inhibition of seed germination and root elongation. Environ. Pollut. 150, 243–250.
Lin D. and B. Xing. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42: 5580-5585. Zhang, L., M. Su, C. Liu, L. Chen, H. Huang, X. Wu, X. Liu, F. Yang, F. Gao and F. Hong. Antioxidant Stress is Promoted by Nano-anatase in Spinach Chloroplasts Under UV-B Radiation. 2007. Biol. Trace Elem. Res. 109, 68.
Torney, F., G. B. Trewyn, V. S. Y. Lin and K. Wang. 2007. Mesoporous silica Nanoparticles Deliver DNA and Chemicals into Plants. Nanotechnol. 2, 295-300.
Moghaddasi, S., Khoshgoftarmanesh, A.H., Karimzadeh, F., Chaney, R. L., 2013. Preparation of nano-particles from waste tire rubber and evaluation of their effectiveness as zinc source for cucumber in nutrient solution culture. Scientia Horticulturae, 160, 398–403.
Taheri, S., A. H. Khoshgoftarmanesh and H. Shariatmadari. 2011. Kinetics of zinc release from ground tire rubber and rubberash in a calcareous soil as alternatives to Zn fertilizers. Plant Soil. 341: 89–97.
Jhson, C. M., P. R. Stout, T. C. Broyer and A. B. Carlton. 1957. Comparative chlorine requirements of different plant species. Plant Soil. 8: 337-353.
Lindzay, W. L. and W. A. Norvell. 1978. Development of DTPA test for zinc, iron, manganese and copper. Soil Sci. S A. J. 42: 421-428.
Kinoshita, T., K. Yamaguchi, S. Akita, S. Niib, F. Kawaizumi and K. Takashi. 2005. Hydrometallurgical recovery of zinc from ashes of automobile tire wastes. Chemosphere. 59:1105-1111.
Smolders, E and F. Degryse. 2002. Fate and effect of zinc from tire debrise in soil. Environ. Sci. Technol, 36: 3706-3710. Schauble, C. 1999. Frit Industries. U.S. EPA. February 24, page 1.
Epstein, E. 1999. Silicon. Ann Reu. Plant physiol., Plant Mole. Biol. 50: 641-644.
Liang, Y. C., Q. Shen, Z. Shen and T. Ma. 2008. Effects of silicon on salinity tolerance of two barley cultivars. Bio. Sci. 19: 173-183.
Alloway, B. J. 2008. Zinc in Soil and Crop Nutrition. Online book published by the International Zinc Association, Brussels, Belgium and Paris, France.
Marschner, H. 1995. Mineral Nutrition of Higher Plants, 2nd ed., Academic Press, London.