مروری بر رنگینه های صنعتی پرکاربرد و روشهای حذف آنها از آب و فاضلاب
محورهای موضوعی : تکنولوژی آب و فاضلابفریبا استوار 1 , مرضیه حسن زاده 2
1 - پژوهشکده محیط زیست جهاددانشگاهی
2 - دانشگاه گیلان
کلید واژه: رنگ, صنایع نساجی, اثرات زیست محیطی, اثرات بهداشتی, فرآیندهای تصفیه,
چکیده مقاله :
در سالهای اخیر، گسترش صنایع به افزایش تولید فاضلابهای صنعتی و آلودگی محیطزیست منجر شده است. مواد رنگزا از مهمترین آلایندههای موجود در فاضلابهای صنعتی بهشمار میآیند. رنگ یکی از مشخصههای دائمی آبهای سطحی است که به دلیل افزایش مصرف کلر دارای اهمیت بالایی است. امروزه رنگها به طور گسترده، در صنایع مختلفی از قبیل نساجی، کاغذ، چرم، صنایع چاپ و لوازم آرایشی مورد استفاده قرار میگیرند. تخلیه فاضلابهاي رنگی ﻧﻪﺗﻨﻬﺎ ﺟﻨﺒﻪ زﯾﺒﺎﺷﻨﺎﺧﺘﯽ آبﻫﺎي ﭘﺬﯾﺮﻧﺪه را ﺗﺤﺖ ﺗﺄﺛﯿﺮﻗﺮار ﻣﯽدﻫﺪ، ﺑﻠﮑﻪ ﻣﻨﺠﺮ ﺑﻪ ﮐﺎﻫﺶ ﻓﺮآﯾﻨﺪ ﻓﺘﻮﺳﻨﺘﺰ ﻧﯿﺰ ﻣﯽگردد. همچنین، وجود رنگها و فرآوردههاي واسطهاي آنها براي زندگی آبزیان سمی، سرطانزا و جهشزا میباشد. اغلب این رنگ ها باعث آلرژي، درماتیت و خارش پوست میشوند، و بروز سرطان و جهشزایی را در انسانها تسریع میکنند. بنابراین پسابهاي صنعتی حاوي رنگ، نیازمند تصفیه قبل از تخلیه به محیط پذیرنده میباشند. هدف از این پژوهش، ارائه خلاصهای از مهمترین رنگینههای صنعتی، تأثیرات بهداشتی و محیطی رنگها به عنوان آلاینده و همچنین؛ بیان روشهای حذف آنها از آب و فاضلاب میباشد. در این پژوهش، روشهای مختلف حذف رنگزا مانند روشهای بیوژیکی، فیزیکی و جذب سطحی بیان شد و بهترین فرآیند جهت تصفیه پسابهای رنگی با توجه به صرفه اقتصادی معرفی گردید.
In recent years, the expansion of industries has led to increase industrial wastewater production and environmental pollution. Dyes materials are one of the most important pollutants in industrial wastewater. Today, dyes are widely used in various industries such as textile, paper, leather, printing, and cosmetics. Drainage of colored wastewater does not only affect the aesthetic aspect of the receiving water but also reduces the process of photosynthesis. Also, the colors and their intermediate products are toxic, carcinogenic and mutagenic for aquatic life. Most of these dyes cause skin allergies, dermatitis, and itching, and accelerate the incidence of cancer and mutation in humans. Therefore, industrial wastewaters containing dye need to be treated prior to discharge into the receiving environment. The purpose of this study was to provide a summary of the most important industrial dyes, the health and environmental effects of dyes as pollutants, and to describe the methods for their removal from water and wastewater. In this study, different dye removal methods such as biological, physical and surface adsorption methods were described and the best process for treatment of colored wastewater was introduced considering the economical cost.
آقایی، ح.، آقایی، م. (1379). شیمی فیزیک، جلد 2 مبانی سینتیک شیمیایی، انتشارات آقابیگ، صفحه 307.
آبراهارت، ای. ان. (1369). رنگینه¬ها و واسطه¬های آنها، ترجمۀ محسن حاجی شریفی، مرکز نشر دانشگاهی.
توکلی، م.، استوار، ف. (1397). بررسی توانایی تخریب و حذف رنگزاهای مختلف با استفاده از نانوذرات کلوئیدی نقره، پژوهش و فناوری محیط زیست، 3(4)، 14-9.
جعفر قلی¬نژاد، ع.، دقیقی اصل، م.، ترکان، ل. (1394). بررسی جذب سطحی رنگ بررسی جذب سطحی رنگ اورانژ G به¬وسیله نانو کامپوزیت Ag/CMK-3، نشریه پژوهشهای کاربردی در شیمی (JARS)، 9(2)، 47-54.
حسنزاده، م.، استوار، ف. (1396). برررسی توانایی حذف رنگینه کاتیونی متیلن بلو در نمونههای آبی با استفاده از پلیمرهای سنتزی، پژوهش و فناوری محیط زیست، 2(3)، 21-17.
حسن زاده، م.، استوار، ف. (1395). استفاده از نانو¬کامپوزیت CeO2/SiO2 برای خالص سازی و حذف رنگینه آلی متیلن¬بلو از نمونه-های آبی، ﮐﻨﻔﺮاﻧﺲ ﺑﯿﻦ اﻟﻤﻠﻠﯽ ﻋﻤﺮان، ﻣﻌﻤﺎری ﻣﺪﯾﺮﯾﺖ شهری و ﻣﺤﯿﻂ زﯾﺴﺖ در هزاره ﺳﻮم، رشت.
مولر ،ترجمه سعید فردوسی. (1372). مدیریت پسماندهای شیمیایی، انتشارات شهرداری تهران.
محمودی، ن.، انصاری، ر.، استوار، ف. (1395). کاربرد نانوکامپوزیت منگنز دی اکسید برای حذف رنگینه ماالشیت سبز در سیستم ستونی بستر ثابت، نشريه مهندسي شيمي ايران، 15(87). 85-74.
منصف خوش حساب، ز.، گنبدی، ک. (1393). حذف رنگینه راکتیو قرمز 74 از پساب نساجی با استفاده از جاذب روی اکسید، نشریه شیمی کاربردی، شماره 30.
Asadollahi, A., Ansari, R., Sohrabnezhad, S., & Ostovar, F. (2018). Investigation of adsorptive properties of Ag2CO3-polyaniline composite for environmental pollution control. GLOBAL NEST JOURNAL, 20(3), 598-609.
Ahmad, A., Mohd-Setapar, S. H., Chuong, C. S., Khatoon, A., Wani, W. A., Kumar, R., & Rafatullah, M. (2015). Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Advances, 5(39), 30801-30818.
Bu, J., Yuan, L., Zhang, N., Liu, D., Meng, Y., & Peng, X. (2020). High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite. Diamond and Related Materials, 101, 107604.
Ansari, R., Seyghali, B., Mohammad-Khah, A., & Zanjanchi, M. A. (2012). Application of nano surfactant modified biosorbent as an efficient adsorbent for dye removal. Separation Science and Technology, 47(12), 1802-1812.
Cui, M. H., Sangeetha, T., Gao, L., & Wang, A. J. (2019). Efficient azo dye wastewater treatment in a hybrid anaerobic reactor with a built-in integrated bioelectrochemical system and an aerobic biofilm reactor: Evaluation of the combined forms and reflux ratio. Bioresource technology, 292, 122001.
Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology, 97(9), 1061-1085.
Daoud, M., Benturki, O., Girods, P., Donnot, A., & Fontana, S. (2019). Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchemical journal, 148, 493-502.
Doğan, M., Abak, H., & Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. Journal of hazardous materials, 164(1), 172-181.
Dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource technology, 98(12), 2369-2385.
Elizalde-González, M. P., & Hernández-Montoya, V. (2009). Removal of acid orange 7 by guava seed carbon: A four parameter optimization study. Journal of hazardous materials, 168(1), 515-522.
Ghoreishi, S. M., & Haghighi, R. (2003). Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chemical engineering journal, 95(1-3), 163-169.
Ghaedi, M., Nasab, A. G., Khodadoust, S., Sahraei, R., & Daneshfar, A. (2015). Characterization of zinc oxide nanorods loaded on activated carbon as cheap and efficient adsorbent for removal of methylene blue. Journal of Industrial and Engineering Chemistry, 21, 986-993.
García-Montaño, J., Torrades, F., A. Pérez-Estrada, L., Oller, I., Malato, S., Maldonado, M. I., & Peral, J. (2008). Degradation pathways of the commercial reactive azo dye Procion Red H-E7B under solar-assisted photo-Fenton reaction. Environmental science & technology, 42(17), 6663-6670.
Gupta, V. K. (2009). Application of low-cost adsorbents for dye removal–a review. Journal of environmental management, 90(8), 2313-2342.
Han, R., Wang, Y., Yu, W., Zou, W., Shi, J., & Liu, H. (2007). Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column. Journal of hazardous materials, 141(3), 713-718..
Hameed, B.H, Krishni, R. R., & Sata, S. A. (2009). A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. Journal of hazardous materials, 162(1), 305-311.
Hunger, K. (Ed.). (2007). Industrial dyes: chemistry, properties, applications. John Wiley & Sons.
Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y., & Zou, L. (2008). Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bioresource technology, 99(8), 2938-2946.
Khan, A. J., Song, J., Ahmed, K., Rahim, A., Volpe, P. L. O., & Rehman, F. (2020). Mesoporous silica MCM-41, SBA-15 and derived bridged polysilsesquioxane SBA-PMDA for the selective removal of textile reactive dyes from wastewater. Journal of Molecular Liquids, 298, 111957.
Khosravi, A., Karimi, M., Ebrahimi, H., & Fallah, N. (2020). Sequencing batch reactor/nanofiltration hybrid method for water recovery from textile wastewater contained phthalocyanine dye and anionic surfactant. Journal of Environmental Chemical Engineering, 103701.
Khajeh, M., Amin, M. M., Taheri, E., Fatehizadeh, A., & McKay, G. (2020). Influence of co-existing cations and anions on removal of direct red 89 dye from synthetic wastewater by hydrodynamic cavitation process: an empirical modeling. Ultrasonics Sonochemistry, 105133.
Liang, C. Z., Sun, S. P., Li, F. Y., Ong, Y. K., & Chung, T. S. (2014). Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 469, 306-315.
Liang, Z., Wang, J., Zhang, Y., Han, C., Ma, S., Chen, J., ... & An, T. (2020). Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 120019.
Mondal, S. (2008). Methods of dye removal from dye house effluent—an overview. Environmental Engineering Science, 25(3), 383-396.
Nguyen, T. A., Fu, C. C., & Juang, R. S. (2016). Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans. Journal of environmental management, 182, 265-271.
Nordin, A. H., Ahmad, K., Xin, L. K., Syieluing, W., & Ngadi, N. (2020). Efficient adsorptive removal of methylene blue from synthetic dye wastewater by green alginate modified with pandan. Materials Today: Proceedings.
Rai, H. S., Singh, S., Cheema, P. P. S., Bansal, T. K., & Banerjee, U. C. (2007). Decolorization of triphenylmethane dye-bath effluent in an integrated two-stage anaerobic reactor. Journal of environmental management, 83(3), 290-297. Gomez, V., Larrechi, M. S., & Callao, M. P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69(7), 1151-1158.
Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource technology, 77(3), 247-255.
Rezaei, H., Razavi, A., & Shahbazi, A. (2017). Removal of Congo red from aqueous solutions using nano-chitosan. Environmental Resources Research, 5(1), 25-34.
Shokouhi, S. B., Dehghanzadeh, R., Aslani, H., & Shahmahdi, N. (2020). Activated carbon catalyzed ozonation (ACCO) of Reactive Blue 194 azo dye in aqueous saline solution: Experimental parameters, kinetic and analysis of activated carbon properties. Journal of Water Process Engineering, 35, 101188.
Soylu, M., Gökkuş, Ö., & Özyonar, F. (2020). Foam Separation for Effective Removal of Disperse and Reactive Dyes from Aqueous Solutions. Separation and Purification Technology, 116985.
Samarghandi, M. R., Tari, K., Shabanloo, A., Salari, M., & Nasab, H. Z. (2020). Synergistic degradation of acid blue 113 dye in a thermally activated persulfate (TAP)/ZnO-GAC oxidation system: Degradation pathway and application for real textile wastewater. Separation and Purification Technology, 116931.
Shi, B., Li, G., Wang, D., Feng, C., & Tang, H. (2007). Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species. Journal of hazardous materials, 143(1-2), 567-574.
Tian, S., Xu, S., Liu, J., He, C., Xiong, Y., & Feng, P. (2019). Highly efficient removal of both cationic and anionic dyes from wastewater with a water-stable and eco-friendly Fe-MOF via host-guest encapsulation. Journal of Cleaner Production, 239, 117767.
Wang, L. K., Hung, Y. T., Lo, H. H., & Yapijakis, C. (Eds.). (2004). Handbook of industrial and hazardous wastes treatment. CRC Press.
Yin, X., Zhang, Z., Ma, H., Venkateswaran, S., & Hsiao, B. S. (2020). Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and adsorption. Separation and Purification Technology, 116794.
Zou, D., Chen, X., Qiu, M., Drioli, E., & Fan, Y. (2019). Flux-enhanced α-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures. Separation and Purification Technology, 215, 143-154.