پردازش تصاویر ورق های فولادی به منظور آشکارسازی عیوب به کمک موجک گابور
محورهای موضوعی : عمومى
1 - دانشگاه آزاد اسلامی واحد زواره
2 - دانشگاه صنعتی امیرکبیر
کلید واژه: پردازش تصویر, بازرسی اتوماتیک, کنترل کیفیت, بخشبندی عیوب, موجک گابوردوبعدی,
چکیده مقاله :
در مراحل مختلف تولید فولاد، خرابیهایی متعددی بر سطح ورق ظاهر میشود. صرف نظر از دلایل ایجاد خرابیها، تشخیص دقیق انواع آنها به طبقه بندی صحیح ورق فولاد کمک میکند و در نتیجه در صد بالایی از فرآیند کنترل کیفیت را به خود اختصاص میدهد. کنترل کیفیت ورقهای فولادی بهمنظور بهبود کیفیت محصول و حفظ بازار رقابتی از اهمیت بالایی برخوردار میباشد. در این مقاله ضمن بررسی اجمالی تکنیکهای پردازش تصویر مورد استفاده، با بهکارگیری پردازش تصویر به کمک موجک گابور دو بعدی راه حل سریع و با دقت بالا برای آشکار سازی عیوب بافتی ورقهای فولادی ارائه شده است. در ابتدا با استفاده از موجک گابور ویژگیهای بافتی قابل توجهی را از تصاویر استخراج میکند که هم دربرگیرندهی جهات مختلف و هم فرکانسهای مختلف میباشد. سپس با استفاده از روش آماری،تصاویری که دربردارنده ی عیوب به طور واضحتری هستند انتخاب شده و محل وقوع عیب تعیین میگردد. با ارائهی نمونههای آزمایشی میزان دقت و سرعت عمل روش بهکار گرفته شده نشان داده شده است.
In different stages of steel production, many defects appear on the surface of the sheet. Regardless of the causes of failures, accurate detection of their types helps to correctly classify the steel sheet and thus occupies a high percentage of the quality control process. Quality control of steel sheets is of great importance in order to improve product quality and maintain a competitive market. In this article, while reviewing the used image processing techniques, by using image processing with the help of two-dimensional Gabor wavelet, a fast and high-accuracy solution is presented for revealing textural defects of steel sheets. At first, using Gabor wavelet, it extracts significant textural features from the images, which includes both different directions and different frequencies. Then, using the statistical method, the images that contain the defects are selected more clearly and the location of the defect is determined. By presenting test samples, the accuracy and speed of the method used have been shown.
[1]. Yazdchi, M., Yazdi, M., Golibagh , A., “Steel Surface Defect Detection Using Texture Segmentation Based on Multifractal Dimension”, The 1nd International Conference on Digital Image Processing (ICDIP 2009), pp. 346-350, 2009, IEEE.
[2]. Li. Jingting, Ying Wang, Oiang Zhang, Wei Chen, "Method of counting thin steel plates based on digital image processing", Image Analysis and Signal Processing (IASP), 2011, IEEE .
[3]. M. Sharifzadeh, S. Alirezaee, R. Amirfattahi, S. Sadri. , "Detection of Steel Defect Using the Image Processing Algorithms", Multitopic Conference, INMIC 2008. , Karachi, Pakistan, Dec. 23-24, 2008, IEEE.
[4]. C.G,Spinola, J.Canero, G. Moreno-Aranda, J.M,Bonelo, M.Martin-Vazquez," Real-time image processing for edge inspection and defect detection in stainless steel production lines ", Imaging Systems and Techniques (IST), 2011, IEEE.
[5]. M. Sadeghi, M. Shafiee and H. R. Hosseini, “Image processing of steel surfaces For detection of observable defects”, 2nd electrical engineering conference, Azad university, Najafabad, 2009.
[6]. M. Sadeghi, M. Shafiee, F. Memarzadeh Zavareh, A. Mahdeian. "Image Processing of Steel Plates Using 2D Wavelet", International Conference on Computer Science and Network Technology, Harbin, china, Dec. 24-26, 2011, IEEE.
[7]. M. Sadeghi, M. Shafiee , M. Shafieirad. "A New Approach to Improve Defect Detection of Steel Sheets Using Gabor Wavelet". 3rd International Conference on Signal Processing Systems, Yantai, China. Aug. 27-28, 2010, IEEE.
[8]. M. Sadeghi, Sh.Valadiesomesaraiet, A. Mahdeiani. " Application of Two Dimensional Wavelet for Defect Detection in Steel Process". 2nd International Conference on Control, Instrumentation, and Automation (ICCIA), Shiraz, I. R. Iran. 2011, IEEE.
[9]. C.Spinola,. M.J.Cañero-Nieto, J.M.Martin-Vazquez.M.J. Bonelo. " Image processing for surface quality control in stainless steel production lines". Imaging Systems and Techniques (IST), Thessaloniki, 1-2 July ,2010, IEEE.
[10]. M. Sadeghi, M. Shafiee, F. Memarzadeh Zavareh, M. Memarzadeh Zavareh. " Using image processing in grading tile with Gabor wavelet, International Conference on Computer Science and Network Technology, Changchun, china, Dec. 29-31, 2012, IEEE.