مدل¬سازی اثرات کف¬شکنی چاه¬های بهره¬برداری بر آبخوان باد-خالد¬آباد، جنوب کاشان
محورهای موضوعی :فاطمه شیرخانی 1 , حمیدرضا ناصری 2 , فرشاد علیجانی 3 , زهره نجات جهرمی 4
1 - گروه زمینشناسی معدنی و آب، دانشکده علوم زمین، دانشگاه شهیدبهشتی، تهران،
2 - گروه زمینشناسی معدنی و آب ، دانشکده علوم زمین، دانشگاه شهیدبهشتی، تهران، ایران
3 - دانشگاه شهید بهشتی
4 - شرکت مدیریت منابع آب ایران، تهران، ایران
کلید واژه: کف¬شکني چاه, مدل¬سازی آبخوان, MODFLOW, دشت باد-خالدآباد.,
چکیده مقاله :
آب زیرزمینی مهمترین منبع تأمین نیاز آبی در منطقه باد-خالدآباد شهرستان کاشان به شمار میرود. با افزایش برداشت از آبخوان باد-خالدآباد فراتر از ظرفیت تجدیدپذیر، پتانسيل برداشت از این آبخوان کاهشیافته است و نیاز به کفشکنی چاهها احساس میشود. این پژوهش به بررسی تأثیر افزایش برداشت از چاهها و کفشکنی آنها بر پتانسیل بهرهبرداری از آبخوان با استفاده از مدل پرداخته است. بدین منظور، ابتدا عوامل کمی و کیفی هیدروژئولوژیک مؤثر بر کفشکنی شناسایی شدند، سپس با تعیین وزن لایه¬ها به روش فرآیند تحلیلی سلسله مراتبی (AHP)، در محیط GIS با یکدیگر تلفیق و پنج منطقه با شرایط بهینه برای پیشنهاد کفشکنی چاه¬ها مشخص شد. پس از آن مدلسازی عددی شامل مراحل واسنجی، صحتسنجی و پیشبینی با استفاده از نرمافزار MODFLOW انجام شد. با استفاده از مدل ایجاد شده، اثرات افزایش برداشت 20 درصدی چاههای بهرهبرداری با اجرای طرح کفشکنی در پنج منطقه پیشنهادی بهصورت مرحله¬ای با بررسی تغییرات سطح ایستابی آبخوان در 10 سال آینده پیشبینی گردید. نتایج مدل¬سازی به ترتیب افت متوسط 12 و 13 متر در بخش¬های جنوبی و شرقی آبخوان را نشان می¬دهد. در این آبخوان، کف¬شکنی بیش از 9 متر، کیفیت و کمیت ذخیره آبخوان را به خطر می¬اندازد.
Groundwater is the most important source of water in the Bad-Khaled Abad area of Kashan. With the increase of extraction from the Bad-Khaled Abad aquifer beyond the renewable capacity the extraction potential of this aquifer has decreased, and the optimization of the depth of the wells is necessary. Using the model, this research has investigated the effect of optimized extraction from wells and their depth on the potential of aquifer exploitation. First, quantitative and qualitative hydrogeological factors affecting the increase in the depth of the wells were identified, and then, through utilizing the Analytical Hierarchy Process (AHP) method, the weight of the layers was determined. Next, they were combined in the GIS environment and five regions with optimal conditions were proposed for well depth optimization. Afterwards, the numerical modeling including calibration, validation, and prediction steps was done using MODFLOW software. Using the created model, and implementing the optimizing depth of the wells plan in the five proposed areas in a phased manner, the effects of a 20% increase in extraction of exploitation wells were predicted by examining the changes in the aquifer water level in the next 10 years. The modeling results show an average drop of 12 and 13 meters in the southern and eastern parts of the aquifer, respectively. In this aquifer, increasing depth by more than 9 meters endangers the quality and quantity of the aquifer storage
آقانباتي، علی.، 1383. زمين¬شناسي ايران. نشر سازمان زمين¬شناسي و اكتشافات معدني كشور، 586.
بیژنی، م.، مریدی، ع. و مجدزاده طباطبایی، م.، 1395. بررسی تاثیرات کفشکنی چاهها بر پتانسیل برداشت آبخوان با استفاده از مدل ریاضی. پژوهشات منابع آب ایران، 12(4)، 83-92.
پاکدل، م.، قره محمودلو، م.، جندقی، ن.، فتح آبادی، آ. و نیک قوجق، ی.،1401. تاثیر برداشت از چاه¬های عمیق و نیمه عمیق بر روی افت سطح ایستابی و پارامترهای کیفی آب ¬زیرزمینی در دشت گرگان. فصلنامه زمینشناسی ایران، 16(64)، 65-84.
رضایی، الف.، زینال¬زاده، ک. و نابغی، ج.، 1398. تعیین حداکثر عمق کفشکنی چاههای کشاورزی با تلفیق مدلهای ریاضی. اولین کنگره بینالمللی و چهارمین کنگره ملی آبیاری و زهکشی ایران.
سازمان زمینشناسی کشور، 1371. نقشه زمینشناسی کاشان در مقیاس 1:250000.
شرکت آب منطقه¬ای استان اصفهان، 1399. گزارش اندازه¬گیری منابع آب زیرزمینی محدوده مطالعاتی باد-خالدآباد (4803). معاونت حفاظت و بهره¬برداری شرکت آب منطقه¬ای استان اصفهان.
قره محمودلو، م.، جندقی، ن. و صیادی، م.، 1398. تکامل هیدروشیمیایی و کاهش کیفیت آب رودخانه گرگانرود. فصلنامه زمینشناسی ایران، 14(55)، 129-145.
نبی¬زاده چمازکتی، ن. و جعفری، ه.، 1398. تخمین تغذیه به آبخوان مرزی سرخس با استفاده از مدل عددی. فصلنامه زمینشناسی ایران، 15(57)، 15-27.
Alizadeh, M.R., Nikoo, M.R. and Rakhshandehroo, G.R., 2017. Hydro-environmental management of groundwater resources: a fuzzy-based multi-objective compromise approach. Journal of Hydrology, 551, 540-554.
Asimi, M.A., 1998. Effects of Liquid Waste on Surface and Underground Water in Ipata and Baboko Slaughtering Slab. Doctoral dissertation, B. Sc. Dissertation: Unpublished, Department of Agric Engineering, University of Ilorin, Nigeria.
Brewer, K., Fogle, T., Stieve, A. and Barr, C., 2003. Uncertainty analysis with site-specific groundwater models: experiences and observations. US Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN: 37831-0062.
Ekrami, M., Ekhtesasi, M.R. and Malekinezhad, H., 2013. The Effects and Consequences of Climatic Drought on Time Delay and the Change in Water Discharge of Springs and Qanats (Case study: Yazd–Ardakan Plain). Iran-Water Resources Research, 9(2), 19-26.
Ifabiyi, I.P., 2008. Depth of hand dug wells and water chemistry: Example from ibadan northeast local government area (L. G. A.), oyo-state, Nigeria. Journal of Social Sciences, 17(3), 261–266.
Izbicki, J.A., Christensen, A.H., Newhouse, M.W., Smith, G.A. and Hanson, R.T., 2005. Temporal changes in the vertical distribution of flow and chloride in deep wells. Groundwater, 43(4), 531–544.
Kianoush, P., Mahvi, M.R., Khah, N.K.F., Kadkhodaie, A., Shokri, B.J. and Varkouhi, S., 2024. Hydrogeological studies of the Sepidan basin to supply required water from exploiting water wells of the Chadormalu mine utilizing reverse osmosis (RO) method. Results in Earth Sciences, 2, 100012.
Kim, J., Park, S., Kang, M., Choo, C.O. and Jeong, G., 2007. Analysis on Statistical Relationship between Groundwater Quality and Geology. Journal of engineering geology, 17(3), 445-453.
Mahadeven, A. and Krishaswamy, S., 1984. Impact of Different Surface Sources of pollution on the Quality of Groundwater. Applied Geography, 15(3), 21-25.
Nair, A.S. and Indu, J., 2021. Assessment of groundwater sustainability and identifying factors inducing¬ groundwater depletion in India. Geophysical Research Letters, 48(3), p.e2020GL087255.
Panda, D.K. and Wahr, J., 2016. Spatiotemporal evolution of water storage changes in I ndia from the updated GRACE‐derived gravity records. Water Resources Research, 52(1), 135-149.
Perlinutter, N.M., Lieber, M. and Frawenthal, H.L., 1964. Contamination of Groundwater by Detergents in a Suburban Environment, South Farmingdale. Area, Long Island New York. U.S. Geological Survey Prof. Paper, 501C: 170-175.
Ronny, A., Erlani, N. and Jasman, N.H., 2019. Level of correlation in the depth of groundwater wells: Iron and chloride. Indian Journal of Environmental Protection, 39(8), 746-751.
Vorosmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P. and Davies, P., 2010. Global threats to human water security and river biodiversity. nature, 467 (7315), 555-561.