الکترولیت های پلیمری مبتنی بر ترکیبات ارگانوسیلیکونی جهت استفاده در نسل جدید باتری ها
محورهای موضوعی : پلیمرها در انرژی و کاربردهای بهداشتی و محیطییونس موسائی اسگوئی 1 , حمیدرضا حیدرنژاد 2
1 - مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
2 - مجتمع دانشگاهی مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر، تهران، ایران
کلید واژه: الکترولیت های پلیمری, ترکیبات ارگانوسیلیکونی, باتری, لیتیوم-یون, لیتیوم-فلز,
چکیده مقاله :
در راستای دستیابی به چگالی انرژی بیشتر در باتری های یون-لیتیوم و لیتیوم-فلز، بهره گیری از الکترولیت ها و خواص مطلوب آنها کلیدی می باشد. با این حال، رفع معایبی همچون واکنش های بین سطحی کنترل نشده و تجزیه های برگشت ناپذیر در الکترولیت های متداول ضروری می باشد، زیرا به بهبود عملکرد و ایمنی باتری ها منجر خواهد شد. در این راستا، ترکیبات پلیمری ارگانوسیلیکونی به دليل خواص مطلوبی همچون عدم سمیت، اصلاح شيميايي آسان، اشتعال ناپذیری، دماي انتقال شيشه ای پايين، پايداري شيميايي و حرارتي بالا و فشار بخار پایین تر در مقایسه با الکترولیت های سنتی، مورد توجه جوامع علمی و صنعتی جهت استفاده در الکترولیت ها به عنوان اجزاي الکتروليتي (حلال یا افزودنی) قرار گرفته اند. بر این اساس در دهه اخیر تلاشهای متعددی جهت بهبود و توسعه عملکرد الکتروليتهاي پليمری مبتني بر ترکيبات ارگانوسيليکون انجام شده است. مقاله مروری حاضر به بررسی پیشرفت های اخیر در زمینه خواص و عملکرد الکتروليتهای پليمری مبتني بر ارگانوسيليکون ها جهت استفاده به عنوان الکتروليتهای مايع، ژل و یا حالت جامد در باتريهای يون-ليتيوم و ليتيوم-فلزی پرداخته است. انواع مختلف الکترولیت های پليمری مبتنی بر ترکيبات ارگانوسيليکونی همچون پلی سيلوکسان، و سيلسکيوکسان های اليگومری چند وجهی از منظر نقش طراحی مولکولی در رسانايی يونی، پايداری حرارتی، شيميايی و الکتروشيميايی، و نیز ايمنی باتری های مربوطه مورد بحث قرار گرفتند.
In order to achieve the higher energy density in lithium-ion and lithium-metal batteries, the use of electrolytes with desirable properties is a key factor. However, it is necessary to reduce or eliminate the disadvantages of conventional electrolytes such as irreversible decompositions and uncontrolled interfacial reactions, leading to the higher performance and safety of batteries. In this regard, the use of polymeric organosilicon compounds in electrolytes is of great industrial interests due to favorable properties such as non-toxicity, easy chemical modification, non-flammability, low glass transition temperature, high chemical and thermal stability and lower vapor pressure compared to traditional electrolytes. Accordingly, in the last decade, several efforts have been made to improve and develop the performance of polymeric electrolytes based on organosilicon compounds. This paper reviews recent developments in the field of properties and performance of polymeric electrolytes based on organosilicones for use as liquid, gel or solid state electrolytes in lithium-ion and lithium-metal batteries. Different types of polymeric electrolytes based on organosilicon compounds such as polysiloxane and polyhedral oligomeric silsesquioxanes were discussed from the point of view of the role of molecular structure in ionic conductivity, thermal stability, chemical and electrochemical stability, as well as the safety of the respective batteries.
[1] E. Quartarone and P. Mustarelli, Emerging trends in the design of electrolytes for lithium and post-lithium batteries, Journal of the Electrochemical Society, 167, 050508, 2020.
[2] S. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, and W. G. Zeier, Benchmarking the performance of all-solid-state lithium batteries, Nature Energy, 5, 259-270, 2020.
[3] L. Fan, S. Wei, S. Li, Q. Li, and Y. Lu, Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries, Advanced Energy Materials, 8, 1702657, 2018.
[4] C.-Z. Zhao, B.-C. Zhao, C. Yan, X.-Q. Zhang, J.-Q. Huang, Y. Mo, X. Xu, H. Li, and Q. Zhang, Liquid phase therapy to solid electrolyte–electrode interface in solid-state Li metal batteries: a review, Energy Storage Materials, 24, 75-84, 2020.
[5] Y. Yamada and A. Yamada, Superconcentrated electrolytes for lithium batteries, Journal of the Electrochemical Society, 162, A2406, 2015.
[6] Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao, C. Deng, M. Han, S. Liang, and J. Zhou, Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode, Energy Storage Materials, 27, 109-116, 2020.
[7] J. Zhu, Z. Zhang, S. Zhao, A. S. Westover, I. Belharouak, and P. F. Cao, Single‐ion conducting polymer electrolytes for solid‐state lithium–metal batteries: design, performance, and challenges, Advanced Energy Materials, 11, 2003836, 2021.
[8] X. Yang, J. Luo, and X. Sun, Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design, Chemical Society Reviews, 49, 2140-2195, 2020.
[9] T. J. Lee, J. Soon, S. Chae, J. H. Ryu, and S. M. Oh, A bifunctional electrolyte additive for high-voltage LiNi0. 5Mn1. 5O4 positive electrodes, ACS Applied Materials & Interfaces, 11, 11306-11316, 2019.
[10] Y. Karatas, N. Kaskhedikar, M. Burjanadze, and H. D. Wiemhöfer, Synthesis of Cross‐Linked Comb Polysiloxane for Polymer Electrolyte Membranes, Macromolecular Chemistry and Physics, 207, 419-425, 2006.
[11] N. S. Schauser, D. J. Grzetic, T. Tabassum, G. A. Kliegle, M. L. Le, E. M. Susca, S. Antoine, T. J. Keller, K. T. Delaney, and S. Han, The role of backbone polarity on aggregation and conduction of ions in polymer electrolytes, Journal of the American Chemical Society, 142, 7055-7065, 2020.
[12] X. Zhan, J. Zhang, M. Liu, J. Lu, Q. Zhang, and F. Chen, Advanced polymer electrolyte with enhanced electrochemical performance for lithium-ion batteries: effect of nitrile-functionalized ionic liquid, ACS Applied Energy Materials, 2, 1685-1694, 2019.
[13] M. Zhang, X. Ma, Y. Liu, J. Ma, F. Chen, and Q. Zhang, High-performance electrospun POSS-(PMMA 46) 8/PVDF hybrid gel polymer electrolytes with PP support for Li-ion batteries, Ionics, 25, 2595-2605, 2019.
[14] B. Zhou, J. Jiang, F. Zhang, and H. Zhang, Crosslinked poly (ethylene oxide)-based membrane electrolyte consisting of polyhedral oligomeric silsesquioxane nanocages for all-solid-state lithium ion batteries, Journal of Power Sources, 449, 227541, 2020.
[15] Z. Wojnarowska, H. Feng, M. Diaz, A. Ortiz, I. Ortiz, J. Knapik-Kowalczuk, M. Vilas, P. Verdía, E. Tojo, and T. Saito, Revealing the charge transport mechanism in polymerized ionic liquids: Insight from high pressure conductivity studies, Chemistry of Materials, 29, 8082-8092, 2017.
[16] U. H. Choi, S. Liang, Q. Chen, J. Runt, and R. H. Colby, Segmental dynamics and dielectric constant of polysiloxane polar copolymers as plasticizers for polymer electrolytes, ACS Applied Materials & Interfaces, 8, 3215-3225, 2016.
[17] K. M. Kim, N. V. Ly, J. H. Won, Y.-G. Lee, W. I. Cho, J. M. Ko, and R. B. Kaner, Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives, Electrochimica Acta, 136, 182-188, 2014.
[18] J. H. Won, H. S. Lee, L. Hamenu, M. Latifatu, Y. M. Lee, K. M. Kim, J. Oh, W. I. Cho, and J. M. Ko, Improvement of low-temperature performance by adopting polydimethylsiloxane-g-polyacrylate and lithium-modified silica nanosalt as electrolyte additives in lithium-ion batteries, Journal of industrial and engineering chemistry, 37, 325-329, 2016.
[19] W. Na, A. S. Lee, J. H. Lee, S. M. Hong, E. Kim, and C. M. Koo, Hybrid ionogel electrolytes with POSS epoxy networks for high temperature lithium ion capacitors, Solid State Ionics, 309, 27-32, 2017.
[20] G. B. Zhou, I. M. Khan, and J. Smid, Solvent-free cation-conducting polysiloxane electrolytes with pendant oligo (oxyethylene) and sulfonate groups, Macromolecules, 26, 2202-2208, 1993.
[21] Z. Qiu, L. Shi, Z. Wang, J. Mindemark, J. Zhu, K. Edström, Y. Zhao, and S. Yuan, Surface activated polyethylene separator promoting Li+ ion transport in gel polymer electrolytes and cycling stability of Li-metal anode, Chemical Engineering Journal, 368, 321-330, 2019.
[22] B. Liu, Y. Huang, L. Zhao, Y. Huang, A. Song, Y. Lin, M. Wang, X. Li, and H. Cao, A novel non-woven fabric supported gel polymer electrolyte based on poly (methylmethacrylate-polyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries, Journal of membrane science, 564, 62-72, 2018.
[23] Q. Lu, L. Dong, L. Chen, J. Fu, L. Shi, M. Li, X. Zeng, H. Lei, and F. Zheng, Inorganic-organic gel electrolytes with 3D cross-linking star-shaped structured networks for lithium ion batteries, Chemical Engineering Journal, 393, 124708, 2020.
[24] B. Liu, Y. Huang, H. Cao, L. Zhao, Y. Huang, A. Song, Y. Lin, X. Li, and M. Wang, A novel porous gel polymer electrolyte based on poly (acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries, Journal of membrane science, 545, 140-149, 2018.
[25] B. Liu, Y. Huang, Y. Huang, X. Deng, A. Song, Y. Lin, M. Wang, X. Li, Y. Wu, and H. Cao, A novel porous gel polymer electrolyte based on poly (acrylonitrile–maleic anhydride) composite by polyhedral oligomeric silsesquioxane for lithium-ion batteries, Journal of Applied Electrochemistry, 49, 1167-1179, 2019.
[26] S. Wang and K. Min, Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity, Polymer, 51, 2621-2628, 2010.
[27] L. C. Rodrigues, M. M. Silva, M. J. Smith, A. Gonçalves, and E. Fortunato, Preparation and characterization of hybrid oxyethylene/siloxane electrolyte systems, Electroanalysis, 25, 515-522, 2013.
[28] E. Cznotka, S. Jeschke, P. Vettikuzha, and H.-D. Wiemhöfer, Semi-interpenetrating polymer network of poly (methyl methacrylate) and ether-modified polysiloxane, Solid State Ionics, 274, 55-63, 2015.
[29] P. R. Chinnam, H. Zhang, and S. L. Wunder, Blends of pegylated polyoctahedralsilsesquioxanes (POSS-PEG) and methyl cellulose as solid polymer electrolytes for lithium batteries, Electrochimica Acta, 170, 191-201, 2015.
[30] Q. Lu, J. Fu, L. Chen, D. Shang, M. Li, Y. Xu, R. Jia, S. Yuan, and L. Shi, Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries, Journal of Power Sources, 414, 31-40, 2019.
[31] J. Shim, D.-G. Kim, H. J. Kim, J. H. Lee, and J.-C. Lee, Polymer composite electrolytes having core–shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries, ACS Applied Materials & Interfaces, 7, 7690-7701, 2015.
[32] C. Ren, M. Liu, J. Zhang, Q. Zhang, X. Zhan, and F. Chen, Solid-state single-ion conducting comb-like siloxane copolymer electrolyte with improved conductivity and electrochemical window for lithium batteries, Journal of Applied Polymer Science, 135, 45848, 2018.
[33] A. B. Puthirath, S. Patra, S. Pal, M. Manoj, A. P. Balan, and S. Jayalekshmi, Transparent flexible lithium ion conducting solid polymer electrolyte, Journal of Materials Chemistry A, 5, 11152-11162, 2017.
[34] Q. Pan, D. M. Smith, H. Qi, S. Wang, and C. Li, Hybrid electrolytes with controlled network structures for lithium metal batteries, Adv. Mater, 27, 5995-6001, 2015.
[35] J.-W. Jung, S.-H. Cho, J. S. Nam, and I.-D. Kim, Current and future cathode materials for non-aqueous Li-air (O2) battery technology–A focused review, Energy Storage Materials, 24, 512-528, 2020.
[36] O. Crowther, B. Meyer, M. Morgan, and M. Salomon, Primary Li-air cell development, Journal of Power Sources, 196, 1498-1502, 2011.
[37] X. Zou, K. Liao, D. Wang, Q. Lu, C. Zhou, P. He, R. Ran, W. Zhou, W. Jin, and Z. Shao, Water-proof, electrolyte-nonvolatile, and flexible Li-air batteries via O2-permeable silica-aerogel-reinforced polydimethylsiloxane external membranes, Energy Storage Materials, 27, 297-306, 2020.
[38] Y. Ruan, J. Sun, S. Song, L. Yu, B. Chen, W. Li, and X. Qin, A perfluorocarbon–silicone oil oxygen–selective membrane for ambient operation of aprotic Li–air batteries, Electrochemistry Communications, 96, 93-97, 2018.
[39] J.-H. Hong, J. W. Kim, S. Kumar, B. Kim, J. Jang, H.-J. Kim, J. Lee, and J.-S. Lee, Solid polymer electrolytes from double-comb Poly (methylhydrosiloxane) based on quaternary ammonium moiety-containing crosslinking system for Li/S battery, Journal of Power Sources, 450, 227690, 2020.
[40] Y. Yang, W. Wang, L. Li, B. Li, and J. Zhang, Stable cycling of Li–S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator, Journal of Materials Chemistry A, 8, 3692-3700, 2020.