ژئوشیمی سرپانتینیت¬های قطعه مرکزی خط درز نئوتتیس (از شمال¬غرب ایران تا زاگرس عراقی و شرق آناتولی)
محورهای موضوعی :
1 - دانشگاه ارومیه
2 - دانشگاه تبریز
کلید واژه: افیولیت, پریدوتیت, فرورانش, سرپانتینیت, نئوتتیس.,
چکیده مقاله :
فرورانش و بسته شدن اقیانوس وسیع نئوتتیس مابین ورقه¬های عربی و اوراسیایی آثار افیولیتی متعددی بجای گذاشته که موقعیت کمنظیر ایران در بخش مرکزی آن قابل ملاحظه است. کمبود اطلاعات، درست در مرز ایران با عراق و ترکیه به دلیل ملاحظات امنیتی تاکنون مانع بررسی اجمالی این خط درز در منتهی¬الیه شمال¬غربی ایران شده است. افزودن افیولیت گیسیان در جنوب ارومیه بهعنوان حلقه گم شده در این امتداد می¬تواند تا حدودی این نبود اطلاعات را پوشش دهد. مطالعه تطبیقی شیمی سنگ¬کل سرپانتینیت¬های بخش مرکزی افیولیت¬های نئوتتیس با در نظر گرفتن چندین لکه از ایران (کامیاران، مریوان و گیسیان)، عراق (پنجوین و ماوات) و ترکیه (گولمان و عثمانیه) در این مقاله، بیانگر تعلق آنها به انواع سرپانتینیت فرورانده اعم از تشکیل اولیه در محیط جلوی قوسی یا محیط عمیق اقیانوسی می¬باشد. ترکیب سرپانتینیت¬های قطعه مرکزی خط¬درز، مشابه متوسط سرپانتینیت¬های جهانی است و بیشتر دارای لیزاردیت/کریزوتیل می¬باشند. در همه آنها تهی¬شدگی از منیزیم به سبب دگرسانی کف ¬اقیانوسی طی فرآیندهای سرپانتینی¬شدن روی داده است. همین امر ممکن است منجر به انحراف داده¬ها از بخش پریدوتیت¬های پهنه¬های عمیق اقیانوسی شده باشد. با در نظر گرفتن این نکته فراوانی فلزات واسطه مختصات چنین پهنه¬ای را تأیید می¬کند. بیشتر سرپانتینیت¬های امتداد نام¬برده از نوع فرورانده¬ ارزیابی می¬شوند. باروری مجدد عناصر با شعاع یونی بزرگ، از طریق تبادل سنگ/سیال حین سرپانتینی¬شدن در آنها مشهود است.
The subduction and closure of the vast Neo-Tethys ocean between the Arabian and Eurasian plates has left numerous ophiolitic traces, the unique position of Iran in its central part is noticeable. The lack of information, right on the border of Iran with Iraq and Turkey, due to security considerations, has so far prevented the overview of this suture zone in the northwestern border of Iran. Adding Gysian ophiolite in southern Urmia as a missing link in this stretch can partially cover this lack of information. A comparative study of whole rock chemistry of serpentinites in the central part of the Neo-Tethys ophiolites, considering several sectors from Iran (Kamyaran, Marivan and Gysian), Iraq (Penjwin and Mawat) and Turkey (Guleman and Osmanie) in this article, indicates that they belong to subducted serpentinites, whether they were originally formed in the fore-arc environment or the at abyssal oceanic environment. Composition of the serpentinites of the central part of the suture zone is similar to the average global serpentinites which have mostly lizardite/chrysotile. All of them show depletion of Mg resulting sea floor alteration during serpentinization. The mentioned point may be caused to data deviation from abyssal peridotites field. Considering that the transition metals contents the confirmed the above setting. Almost all of the studied serpentinites are from subducted type which indicates refertilization of LILE evidences as a result of rock/fluid interaction through serpentinization.
فصلنامه پژوهش¬های دانش زمین. 12 (48)، 1-19.
میری، م.، ابراهیمی، م. و ویسی نیا، ا.، 1399. بررسی پتروژنز سرپانتینیت¬های پهنه گرماب در پهنه افیولیت کرمانشاه (غرب ایران) با استفاده از شیمی کانی¬ها و نمودارهای فازی. زمین¬شناسی کاربردی پیشرفته، 10 (4)، 651-634.
مؤید، م.، 1381. نگرشی نو بر تکوین و تکامل نئوتتیس و ارتباط آن با ماگماتیسم ترشیری ارومیه-دختر و البرز غربی- آذربایجان. ششمین همایش انجمن زمین¬شناسی ایران. SGSI06-052.
نیکبخت، س.، بیابانگرد، ح. و باقری، س.، 1399. پترولوژی و ژئوشیمی افیولیت سیاه جنگل شمال شرق آتشفشان تفتان. فصلنامه زمین¬شناسی ایران، 56 (14): 99-87.
ویسی نیا، ا.، ابراهیمی، م. رحیم زاده، ب. و اسمعیلی، ر.، 1400. بررسی ژئوشیمی مجموعه افیولیتی گرماب، شمال شرق کامیاران: سیر تحولی مورب به قوس اقیانوسی. علوم زمین، 31(1)، 148-135.
Ali, S. A., Buckman, S., Aswad, K. J., Jones, B. G., Ismail, S. A. and Nutman, A. P., 2012. Recognition of Late Cretaceous Hasanbag ophiolite-arc rocks in the Kurdistan region of the Iraqi Zagros thrust zone: a missing link in the paleogeography of the closing Neo Tethys Ocean. Lithosphere, 4, 395-410.
Ao, S., Xiao, W., Jafari, M. K., Talebian, M., Chen, L., Wan, B., Ji, W. and Zhang, Z., 2016. U-Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): from continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern NeoTethys. Gondwana Research, 31, 305-318.
Ao, S., Jafari, M. K. and Xiao, W., 2017. U-Pb zircon age of the Piranshahr ophiolite in NW Iran: enigmatic relict of an arc in NeoTethys before the Arabia and Eurasia collision. GSA Annual Meeting in Seattle, Washington, USA. DOI:10.1130/abs/2017AM-302778.
Ao, S., Mao, Q. Jafari, M. K. and et al., 2020. U–Pb age, Hf–O isotopes, and geochemistry of the Sardasht ophiolite in the NW Zagros orogen: Implications for the tectonic evolution of NeoTethys. Geological Journal, 1–15. DOI: 10.1002/gj.4011.
Aqrawi, A. M., Elias, E.M. and Mohammed, Y. O., 2007. Oxygen and Hydrogen Isotope Study of Serpentinized Peridotite Rocks, Thrust Zone, North East Iraq. Iraqi Journal of Earth Sciences, 7 (1), 13-20.
Aswad, K. J., Aziz, N. R. H. and Koyi, H. A., 2011. Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros suture zone, Kurdistan Region, Iraq Geological Magazine, 148, 802-818.
Bach, W. and Klein, F., 2009. The petrology of seafloor rodingites: insights from geochemical reaction path modelling. Lithos 112, 103–117.
Beard, J.S., 1986. Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology, 14, 848-851.
Bilici, Ö. and Kolayli, H., 2018. Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting. Turkish Journal of Earth Sciences, 27, 384-404.
Bogolepov, V.G., 1970. Problem of serpentinization of ultrabasic rocks: International Geology Review, 12, 421–32.
Boudier, F., Baronnet, A. and Mainprice, D., 2009. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite: Journal of Petrology, 51(1-2), 495-512.
Cannaò, E., Scambelluri, M., Agostini, S., Tonarini, S. and Godard, M., 2016. Linking serpentinit geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy): Geochimica et Cosmochimica Acta, 116, 115-133.
Deschamps, F., Godard, M., Guillot, S. and Hattori, K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos, 178, 96-127.
Dilek, Y., Imamverdiyev, N. and Altunkaynak, S., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52, 536–578. https://doi.org/10. 1080/00206810903360422
Eren Rizeli, M, Wang, K.L., Bingol, A.F. and Beyarslan, M., 2016. Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a forearc setting: 13th International Conference on Gondwana to Asia, At: Trivandrum, India Volume: 22.
Evans, B. W., Hattori, K. and Baronnet, A., 2013. Serpentinite: what, why, where?: Element, 9(2), 99-106.
Green II, H.W., 2007. Shearing instabilities accompanying high-pressure phase transformations and the mechanics of deep earthquakes. Proceedings of the National Academy of Sciences, 104, 9133–9138.
Günay, K. and Çolakoğlu, A., 2016. Spinel compositions of mantle-hosted chromitite from the Eastern Anatolian ophiolite body, Turkey: Implications for deep and shallow magmatic processes. Ore Geology Reviews, 73, 29–41.
Günay, K., Çolakoğlu, A.R. and Çakır, Ü., 2012. Geochemical properties and rodingitization of diabase dykes cutting peridotites in Yüksekova complex (Özalp, Van — Turkey). Bulletin of Mineralogy and Exploration, 144, 1–22.
Hacker, B., Abers, G. and Peacock, S., 2003. Subduction factory 1. Theoretical mineralogy densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research 108 (B1). http://dx.doi.org/10.1029/2001JB001127.
Ismail, A. A., Mirza, T. M. and Carr, P, F., 2010. Platinum-group elements geochemistry in podiform chromitites and associated peridotites of the Mawat ophiolite, northeastern Iraq. Journal of Asian Earth Sciences, 37, 31–41.
Ismail, S. A., Arai, S., Ahmed, A. H. and Shimizu, Y., 2009. Chromitite and peridotite from Rayat, northeastern Iraq, as fragments of a Tethyan ophiolite. Island Arc, 18, 175–183.
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V. and Vanke, H., 1979. The abundance of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Geochimica et Cosmochimica Acta, 11 (2), 2031–2050
Klein, F., Bach, W., Humphris, S. E., Kahl, W. A., Jöns, N., Moskowitz, B. and Berquó, T. S., 2014. Magnetite in seafloor serpentinite some like it hot. Geology, 42(2), 135-138.Lafay, R., Deschamps, F., Schwartz, S., Guillot, S., Godard, M., Debret, B. and Nicollet, C., 2013. High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps. Chemical Geology, 343, 38-54.
Leturmy, P. and Robin, C., 2010. Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic: introduction. In: Leturmy, P., Robin, C. (eds.) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic. Geol. Soc. London Spsc. Publ. 330. Geological Society of London, London, 1–4.
McDonough, W.F. and Sun, S.-S., 1995. The composition of the Earth. Chemical Geology, 120, 223–253.
McQuarrie, N., Stock, J.M., Verdel, C. and Wernicke, B., 2003. Cenozoic evolution of NeoTethys and implications for the causes of plate motions. Geophysical Research Letters, 30(20), 2036.
Modjarrad, M. Whitney, D.L. and Omrani, H. (2024) etrologic evolution of the Gysian ophiolitic serpentinites, NW Iran. Acta Geochimica, https://doi.org/10.1007/s11631-024-00682-6
Modjarrad, M., 2022. Geochemistry and crystal shape, size and spatial distribution in arc-related gabbro, Urmia, NW Iran. Acta Geochim, DOI: 10.1007/s11631-022-00557-8.
Moghadam, H., Corfu, F., Stern, R. J. and Lotfi Bakhsh, A., 2018. The Eastern Khoy metamorphic complex of NW Iran: a Jurassic ophiolite or continuation of the Sanandaj–Sirjan Zone? Journal of the Geological Society, DOI: 10.1144/jgs2018-081.
Moghadam, H., Li, Q.L., Stern, R. J., Chiaradia, M., Karsli, O. and Rahimzadeh, B., 2020. The Paleogene Ophiolite Conundrum of the Iran-Iraq Border Region. Journal of the geological society, DOI: https://doi.org/10.1144/jgs2020-009.
Mohammad, Y. O., 2011. P–T evolution of meta-peridotite in the Penjwin ophiolite, northeastern Arabian journal of Geosciences, 6(2).
Monsef, I., Monsef, R., Mata, J., Zhang, Z., Pirouz, M., Rezaeian, M., Esmaeli, R. and Xiao, W. (2018) Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: constraints from zircon U-Pb geochronology and geochemistry of the Neyriz ophiolite (South Iran). Gondwana Res, 62: 287-305.
Moores, E. M., Kellogg, L. H. and Dilek, Y., 2000. Tethyan ophiolites, mantle convection, and tectonic ‘historical contingency’: A resolution of the ‘ophiolite conundrum’. In Dilek Y., Moores E. M., Elthon D. and Nicolas A. (eds.) Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program, pp. 3–12. Geological Society of America Special Paper 349.
Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology 45, 2423–2458.
Niu, Y. and Hekinian, R., 1997. Spreading rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385, 326–329.
Okay, A.I. and Tüysüz, O., 1999. Tethyan sutures of northern Turkey. In: Durand, B., Jolivet, L., Horvath, F., Serane, M. (Eds.). Mediterranean Basins. Tertiary Extension within the Alpine Orogen. Geol. Soc. London Spec. Publ., 156: 475-515.
Palandri, J. L. and Reed, M. H., 2004. Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation: Geochimica et Cosmochimica Acta, v. 68(5), p. 1115-1133.
Parkinson, I.J. and Pearce, J.A., 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a suprasubduction zone setting. Journal of Petrology 39 (9), 1577–1618.
Parlak, O., Höck, V. and Delaloye, M., 2002. The suprasubduction zone Pozantı-Karsantı ophiolite, southern Turkey: evidence for high-pressure crystal fractionation of the ultramafic cumulates. Lithos, 65: 205-224.
Pawley, A. R. and Holloway, J. R., 1993. Water sources for subduction zone volcanism: New experimental constraints. Science, 260(5108): 664-667.
Pearce, J.A. and Stern, R.J., 2006. Origin of back-arc basin magmas: trace element and isotope perspectives. Geophisical Monograph series 166, American Geophysical Union, Washington, 63-86.
Pearce, J.A., van der Laan, S.R., Arculus, R. J., Murton, B. J., Ishii, T., Peate, D.W. and Parkinson, I.J. 1992. Boninite and harzburgite from LEG125 (Bonin–Mariana Forearc): a case study of magma genesis during the initial stages of subduction. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of the Ocean Drilling Program, Scientifi c Results, Ocean Drilling Program, College Station, 125, 623–657.
Putnis, A. and Austrheim, H., 2010. Fluid-induced processes: metasomatism and metamorphism. Geofluids, 10:254-269.
Richards, J.P., 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70:323-345.
Rizaoglu, T., Bagci, U. and Parlak, O., 2019. Geochemistry and tectonic signifi cance of the ophiolitic rocks of the Yarpuz-Kaypak (Amanoslar, Osmaniye) area. Bull. Min. Res. Exp., 159: 99-116.
Robertson, A.H.F., 2002. Overview of the genesis and emplacement of mesozoic ophiolites in the eastern mediterranean tethyan region. Lithos, 65: 1-67.
Rüpke, L.H., Morgan, J.P., Hort, M. and Connolly, J.A.D., 2004. Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters 223, 17–34.
Salters, V.J.M. and Stracke, A., 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5 (5). http://dx.doi.org/10.1029/2003GC000597.
Şengör, A. C., Özeren, M. S., Keskin, M., Sakınç, M., Özbakır, A. D. and Kayan, I., 2008. Easte Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens: Earth-Science Reviews, 90(1-2), 1-48.
Sengor, A.M.C. and Yılmaz, Y., 1981. Tethyan evolution of Turkey, a plate tectonic approach. Tectonophysics, 75: 181-241.
Sharp, Z.D., Barnes, J.D., 2004. Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones: Earth and Planetary Sciences Letters, 226:243–254.
Skelton, A. D. and Valley, J. W., 2000. The relative timing of serpentinisation and mantle exhumation at the ocean–continent transition, Iberia: constraints from oxygen isotopes: Earth and Planetary Science Letters, 178(3), 327-338.
Tonarini, S., Agostini, S., Doglioni, C., Innocenti, F. and Manetti, P., 2007. Evidence for serpentinite fluid in convergent margin systems: the example of El Salvador (Central America) arc lavas: Geochemistry, Geophysics, Geosystems, v. 8 (9). http:// dx.doi.org/10.1029/2006GC001508.
Uner, T., 2021. Supra-subduction zone mantle peridotites in the Tethyan Ocean (East Anatolian Accretionary Complex–Eastern Turkey): Petrological evidence for melting and melt-rock interaction. Mineralogy and Petrology , 115: 663–685.
Van Keken, P. E., Hacker, B. R., Syracuse, E. M. and Abers, G. A., 2011. Subduction factory: 4. Depth dependent flux of H2O from subducting slabs worldwide: Journal of Geophysical Research. Solid Earth, 116(B1).
Yilmaz, A. and Yilmaz, H., 2013. Ophiolites and Ophiolitic Mélanges of Turkey: A Review. Geological Bulletin of Turkey, 56 (2): 61-114.
Zhihong, W. and Huafu, L., 1998. Geology, petrology and geochemistry of the mafic-ultramafic rocks in Fujian coastal region, southeastern China, and their genesid. Ofioliti, 23(1):1-6.
Wang, X., Lang, X., Klemd, R., Deng, Y. and Tang, J., 2022. Subduction initiation of the Neo-Tethys oceanic lithosphere by collision-induced subduction transference. Gondwana Research, 104:54-69.