تعیین الکتروفاسیس¬های مخزن آسماری با استفاده از شبکه عصبی SOM در میدان نفتی قلعهنار
محورهای موضوعی : زمین شناسی نفتیحیی نیلوفری 1 , بهمن سلیمانی 2 , علی کدخدائی 3 , عبداله چوگل 4
1 - زمین شناسی نفت و حوضه های رسوبی، دانشگاه شهید چمران اهواز
2 - استاد زمین شناسی نفت، عضو هیئت علمی دانشکده علوم زمین دانشگاه شهید چمران اهواز، اهواز، ایران
3 - دانشگاه تبریز
4 - گروه زمین شناسی نفت و حوضه های رسوبی دانشگاه شهید چمران اهواز
کلید واژه: الکتروفاسیس, مخزن آسماری, خوشه¬سازی, شبکه عصبی خود¬سازمانده,
چکیده مقاله :
تعیین الکتروفاسیسهای مخزنی نقش مهمی در ارزیابی پتروفیزیکی زونهای یک مخزن بمنظور بهرهبرداری بهینه از مخازن و توسعه میادین نفتی دارد. الکتروفاسیس بر مبناي خوشه¬بندي داده¬ها تعريف مي¬شود، که بر مبنای خوشه¬بندی نمودارهای پتروفیزیکی مشابه در گروه-های یکسان و تمایز آنها از سایر گروه¬ها می باشد. پژوهش حاضر در سازند آسماری میدان نفتی قلعهنار صورت پذیرفته است. در ابتدا با استفاده از روش¬های مختلف خوشه¬سازی نظیر SOM، MRGC و DYNCLUST در تعدادی از چاه¬های میدان، مدل اولیه الکتروفاسیس¬ها تعیین گردید. الکتروفاسیس¬های تعیین شده با واحد¬های جریانی حاصل از تخلخل و تراوایی نمودارمغزه تطابق داده شد. از بین آنها روش SOM که دارای بیشترین تطابق بود جهت خوشه¬سازی انتخاب گردید. الکتروفاسیسها بر اساس پارامترهایی از قبیل نمودارهای تخلخل و گاما ایجاد شده و به کل میدان بسط داده شد و در نتیجه مدلی ایجاد گردید که توانایی جدایش بخش¬های مختلف مخزنی را از همدیگر دارا بود. این مدل نشان داد که زونهای 1 و 3 دارای کیفیت مخزنی مطلوبی است و زون 4 نیز دارای کیفیت متوسط تا خوب میباشد، اما زونهای 2 و5 شرایط نا مطلوبی را دارا هستند.
Electrofacies determination of the reservoir plays an important role in the petrophysical evaluation of reservoir zones to optimize production and development of oil fields. The process is based on data clustering that all unique petrophysical set are put in one group to separate from other groups. The present study was done in Asmari Formation, Ghaleh Nar oil field. The primary electrofacies model determined using different clustering methods such as SOM, MRGC, and DYNCLUST in several drilled wells. In the next step, they correlated with fluid units of porosity and permeability of core plot. Of these methods, SOM indicates more correlation and so it was selected to data clustering. According to Gamma and porosity plots, electrofacies were generated and developed to the whole of the field. This is resulted to a model with the potential of separation parts of the reservoir. The model showed that some parts of the reservoir especial zone 1 and zone 3 can be considered as more suitable reservoir quality than other parts. Zone 4 shows normal reservoir quality but two other zones are not in suitable reservoir condition.
مطیعی، ه. 1374، زمین شناسی نفت زاگرس 1و2، انتشارات سازمان زمین شناسی کشور. 1024 صفحه.
رحیمی بهار.ع.ا، 1391-الف، تفکیک زون های مختلف مخزن هیدروکربنب با کمک رخساره های الکتریکی، پژوهش نفت، 10ص.
رحیمی بهار.ع.ا، 1391-ب، استفاده از رخساره های الکتریکی در شبیه سازی رخساره های رسوبی، مجله رخساره های رسوبی، دانشگاه مشهد، 15ص.
Abbaszadeh, M., H. Fujii and F. Fujimoto, 1996, Permeability prediction by hydrolic flow units theory and applications. SPE Format. Evaluate, 11:263-271.
Ali, A.M., and Alhaleem, A.A., 2023, Determination of Reservoir Hydraulic Flow Units and Permeability Estimation Using Flow Zone Indicator Method. Iraqi Journal of Chemical and PetroleumEngineeringVol. 24 No.2 (June 2023) 89 – 95. DOI: 10.31699/IJCPE.2023.2.10.
Amaefule, J.O., Altunbay, M., Tiab, D., Kersey, D.G. and Keeland, D.K., 1994, Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. SPE Paper 26436, p.1–16.
Carman, P.C., 1937, Fluid Flow through granular beds. Trans. AIChE, 15: 150-166.
Casciello, E., Vergés, J., Saura, E., Casini, G., Fernandez, N., Blanc, E., Homke, S., Hunt, D. W., 2009, Fold patterns and multilayer rheology of the Lurestan Province, Zagros Simply Folded Belt (Iran), Journal of the Geological Society, 166, 947-959.DOI: 10.1144/0016-76492008-138.
Costa, F. R., de Carvalho Carneiro, C., and Ulsen, C., 2023, Self-Organizing Maps Analysis of Chemical–Mineralogical Gold Ore Characterization in Support of Geometallurgy. Mining 2023, 3(2), 230-240; https://doi.org/10.3390/mining3020014.
Frysztacki, M.M., Recht, G. & Brown, T. A, 2022, comparison of clustering methods for the spatial reduction of renewable electricity optimisation models of Europe. Energy Inform 5 (4). https://doi.org/10.1186/s42162-022-00187-7
Gunter, G.W. et al., 1997. Early determination of reservoir flow units using an integrated petrophysical method. SPE 38679, P 373-380
Kadkhodaie-Ilkchi, A., and Amini,A., 2009, A fuzzy logic approach to estimating hydraulic flow units from well log data: a case study from the Ahvaz oil field, South Iran, Journal of Petroleum Geology, v.32, no.1, p. 1-12.
Khalid, M., Desouky, SD., Rashed, M. et al., 2020, Application of hydraulic flow units’ approach for improving reservoir characterization and predicting permeability. J Petrol Explor Prod Technol 10, 467–479 (2020). https://doi.org/10.1007/s13202-019-00758-7
Khoshbakht, F., Mohammadnia, M., Rahimi Bahar, a.A., and Beiraghadar, Y., 2015, Evaluating Different Approaches to Permeability Prediction in a Carbonate Reservoir, J. Petrol.Sci. Tech., v.5, no.1, P.79-90
Kohonen, T., Kaski, S., and Lappalainen, H., 1997. Self-organized formation of various invariant feature filters in the adaptive-subspace SOM. Neural Computation, v. 9, p.1321-1344.
Kozeny, J., 1927, Uber Kapillare Leitung des Wassers im Boden, Stizurgsberichte, Royal Academy of Science, Vienna, Proc. Class 1, 136: 271-306.
Kuroda, M.C., Vidal, A.C., Leite, E.P., and Drummond, R.D., 2012, Electrofacies characterization using self-organization maps, Revista Brasileira de Geof´isica, v. 30, no.3, p. 287-299
Lucia, F.J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization: AAPG Bulletin, v. 79, no.9, p. 1275 – 1300.
Maldar, R., Ranjbar-Karami, R., Behdad, A., Bagherzadeh, S., 2022, Reservoir rock typing and electrofacies characterization by integrating petrophysical properties and core data in the Bangestan reservoir of the Gachsaran oilfield, the Zagros basin, Iran. Journal of Petroleum Science and Engineering, 210, 110080. https://doi.org/10.1016/j.petrol.2021.110080.
Mirzaei-Paiaman, A., Saboorian Jooybari, H., Pourafshary, P., 2015, Improved Method to Identify Hydraulic Flow Units for Reservoir Characterization. Energy Technology 3(7). DOI: 10.1002/ente.201500010.
Mukherjee, A., 1997, Self-organizing neural network for identification of natural modes. The Journal of Computing in Civil Engineering, v. 11, no. 1, p.74-77.
Schatzmann, J., 2003, Using Self-Organizing Maps to Visualize Clusters and Trends in Multidimensional Datasets. Department of Computing Data Mining Group, Imperial College, London.
Serra, O., and H. Abbot, 1980, The Contribution of Logging Data to Sedimentology and Stratigraphy, SPE of AIME, Transaction 55th Annual Fall Technology Conference.
Sfidari, E., Kadkhodaie-Ilkhchi, A., and Najjari, S., 2012, Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems. Journal of Petroleum Science and Engineering 86-87, p.190-205.
Shedid, A. S., and Reyadh A. A., 2002, A New Approach of Reservoir Description of Carbonate Reservoirs, SPE 74344, 1- 10P.
Soto R., Garcia J, C. 2001, Permeability prediction using hydraulic flow units and hybrid soft computing systems, spe 71455.
Van Hulle, M.M., 2012, Self-organizing Maps. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_19.
Vesanto J., 1999, SOM-Based Visualization Methods. Intelligent Data Analysis, V.3, no.2, P.111- 126.
Vesanto, J. & Alhoniemi, E., 2000, Clustering of the Self-Organizing Map. IEEE Transactions on Neural Networks 11(3), 586-600.
Winland H. D., 1972, Oil Accumulation in Response to Pore Size changes. Weyburn field, Saskatchewan. Amoco Production Research Report, no. F72-G-25, 197.
Ye, S.J., and Rabiller, P., 2000, A New Tool for electrofacies Analysis: Multi-Resolution Graph-Based Clustering, SPWLA, 41st Annual Logging Symposium Transaction, June 4-7, V. 4, p. 175-189.