زیست چینه نگاری نهشته¬های سازند کتکویه در برش گزوئیه، شمال غرب کرمان (جنوب شرق زرند) براساس فونای کنودونتی
محورهای موضوعی : چینه شناسیفرزاد پورصالحی 1 , علی بهرامی 2 , حامد عامری 3 , گوستاو گابریل ولدمان 4
1 - دکتری چينه شناسي و فسيل شناسي، گروه زمين شناسي، دانشگاه اصفهان، اصفهان، ايران
2 - دانشيار چينه شناسي و فسيل شناسي، عضو هيات علمي گروه زمين شناسي، دانشگاه اصفهان، اصفهان، ايران
3 - دانشیار گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان،
4 - دانشیار چينه شناسي و فسيل شناسي، عضو هيات علمي مرکز تحقیقات علوم زمین، دانشگاه ملی کوردوبا، آرژانتین
کلید واژه: اردویسین, سازند کتکویه, حوضه¬ی شمال غرب کرمان, برش گزوئیه, کنودونت,
چکیده مقاله :
چکيده توالیهای رسوبی دریایی اردویسین ایران در بلوک های ساختاری متفاوتی در امتداد حاشیه شمالی گندوانا قرار دارند. در شمال حوضه کرمان، توالی های رسوبی اردویسین به نام سازند کتکویه معرفی گردیده اند که مشتمل بر70 تا 300 متر از سنگهای سیلیسی آواری، یک یا دو افق نازک کربناته در بخش بالایی و نهشته های آذرآواری می باشند. به طور سنتی مرز کامبرین-اردویسین در حوضه کرمان بین عضو دولومیت هتکن از سازند کوهبنان (فورونگین پسین) و عضو شیل پایینی سازند کتکویه تعیین شده است. با این وجود، تعیین جایگاه مرز ترمادوسین پیشین به دلیل اینکه هیچ فسیل شاخصی به طور مستند از این فاصله¬ی زمانی گزارش نگردیده نامشخص می¬باشد. به منظور زیست چینه نگاری سازند کتکویه در حوضه کرمان، برش گزوئیه با ضخامت تقریبی حدود170 متر انتخاب گردید. سازند کتکویه در این برش بر روی عضو دولومیت هتکن و در زیر ماسه سنگ های سازند شبجره به سن سیلورین قرارگرفته است. در برش گزوئیه به دلیل عملکرد دایک¬های بازالتی و تکتونیک شدید منطقه، لایه¬های سنگ آهک حاوی فسیل به شدت آلتره شده¬اند که طی سه مرحله برداشت نمونه، در نهایت 320 کنودونت از افق کربناته بخش بالایی این سازند بازیابی شد و 3 جنس و 7 گونه شناسایی گردید و بر این اساس سه¬ گستره ¬کنودونتی ¬ثبت¬شد: 1) Icriodella superba Range Zone(کاتین - ؟ هیرنانتین ؛ اردویسین پسین)، 2) Amorphognathus ordovicicus Range Zone (کاتین – اردویسین پسین)، 3) Amorphognathus superbus Range Zone (کاتین - ؟ هیرنانتین؛ اردویسین ¬پسین). سن اردویسین ¬پسین در سازند کتکویه در برش گزوئیه حداقل با سه گونه از جنس¬کنودونت Icriodella (I. superba ، I. deflecta، (I. cf. discrete و دوگونه¬ از جنس A. superbus) Amorphognathus،A. ordovicicus) مشخص و منجر به شناسایی آشکوب¬های Katian-?Hirnantian گردید.
The Ordovician marine sedimentary sequences of Iran are located in different structural blocks along the northern margin of Gondwana. In the north of the Kerman Basin, Ordovician sedimentary sequences named Katkoyeh Formation have been introduced, which consist of 70 to 300 meters of siliceous siliceous rocks, one or two thin carbonate horizons in the upper part, and pyroclastic deposits. Traditionally, the Cambrian-Ordovician boundary in the Kerman Basin has been determined between the Hatken Dolomite Member of the Kuhbanan Formation (Late Furongian) and the Lower Shale Member of the Katkuye Formation. However, determining the location of the previous Tremadocine boundary is uncertain because no fossils have been documented from this interval. For the purpose of biostratigraphy of the Katkuye formation in Kerman basin, Gezoye section with an approximate thickness of about 170 meters was selected. In this section, the Katkoyeh Formation is located on the Hatken Dolomite Member and under the Shabjareh Formation sandstones of Silurian age. In the Gezoiye section, due to the action of basalt dikes and intense tectonics in the region, the limestone layers containing fossils have been severely altered, and during three sampling stages, 320 conodonts were recovered from the carbonate horizon of the upper part of this formation, and 3 Genus and 7 species were identified and based on this, three conodont ranges were recorded: 1) Icriodella superba Range Zone (Katian - ? Hirnantian; Late Ordovician), 2) Amorphognathus ordovicicus Range Zone (Katian - Late Ordovician), 3) Amorphognathus superbus Range Zone (Katian - ? Hirnantian; Late Ordovician). Late Ordovician age in the Katkuye formation in the Gezoye section with at least three species of the conodont genus Icriodella (I. superba, I. deflecta, (I. cf. discrete and two species of A. superbus) Amorphognathus, A. ordovicicus) determined and led to the identification of the Katian-?Hirnantian rocks.
منابع [1] ALAVI-NAINI, M.,1996, Tectonostratigraphic synthesis and structural style of the Alborz montains in northern Iran. J.Geodynamics 21(1), 1-33.
[2] ALBANESI, G.L., HüNICKEN, M.A. and ORTEGA, G., 1995, Amorphognathus aff. superbus (Conodonta) en la Formación Trapiche (Ordovícico Superior), cerro Potrerillo, Departamento Jáchal, Provincia de San Juan, Argentina. Boletín Academia Nacional de Ciencias, Córdoba 60, 461–468.
[3] ALDRIDGE, R.J., 1972, Llandovery conodonts from the Welsh Borderland. Bulletin of the British Museum Natural History (Geology) 22(2), 125–231.
[4] ASSERETO,R.,1966, Geological map of upper Djadjerud and Lar valleys (central Elburz,Iran) .Inst. Geol. Univ. Milano (Ser.G) 232: 1-86, 2 geological.map 1:50000.
[5] BAMBACH, R.K., KNOLL, A.H. and WANG, S.C., 2004, Origination, extinction, and mass depletions of marine diversity: Paleobiology, 30,522–542, https://doi.org/10.1666/0094- 8373(2004)030(0522:OEAMDO)2.0.CO;2.
[6] BAUER, J.A.,1987, Conodonts and conodont biostratigraphy of the McLish and Tulip Creek Formations (Middle Ordovi cian), SouthCentral Oklahoma, Oklahoma Geol. Surv. Bull. 141.
[7] BAUER, J.A.,1994, Conodonts from the Bromide Formation (Mid dle Ordovician), SouthCentral Oklahoma, J. Paleontol., 1994, 68, 358–376.
[8] BERBERIAN, M., KING, G.C.P., 1981, Towards a paleogeography and tectonic evolution of Iran.Canadian Journal of Earth Science, 18, 210-265.
[9] BENEDETTO, J.L., 2003, Ordovician Fossils of Argentina. Secretaría de Ciencia Y Tecnología. Universidad Nacional de Córdoba, Córdoba (665).
[10] BERGSTRÖM, S. M., 1971, Conodont biostratigraphy of the Middle and Upper Ordovician of Europe and eastern North America. Geological Society of America, Memoir 127, 83–161.
[11] BERGSTRÖM,S. M., 1983, Biogeography, evolutionary relationships, and biostratigraphic significance of Ordovician platform conodonts. Fossils and Strata 15, 35–58.
[12] BOULIN, J., 1991, Structures in Southwest Asia and evolution of the eastern Tethys. Tectonophysics 196, 211-268.
[13] BOUCOT, A. J., XU, C. and SCOTESE, C.R., 2013, Paleozoic paleoclimate: an atlas of lithologic indicators of climate. SEPM Concepts Sedimentol. Paleontol. 11, 1–478.
[14] BRANSON, E.B. and MEHL, M.G., 1934a, Conodonts from the Grassy Creek shale of Missouri: Missouri University Studies, 8, 171–259.
[15] BRENCHLEY, P.J., MARSHALL, J.D. and UNDERWOOD, C.J., 2001, Do all mass extinctions represent an eco- logical crisis? Evidence from the Late Ordovi- cian: Geological Journal, 36, 329–340, https://doi.org/10.1002/gj.880.
[16] BRUTON, D. L.,WRIGHT, A. J. and HAMEDI,M.A., 2004, Ordovician trilobites of Iran. Palaeontographica A 271,111-149.
[17] COCKS, L.R.M. and FORTEY, R.A., 1982, Faunal evidence for oceanic separations in the Palaeozoic of Britain. Journal of the Geological Society, London, 139, 465–478.
[18] COCKS, L.R.M. and FORTEY, R.A., 2009, Avalonia, a long-lived terrane in the lower Palaeozoic? Geol. Soc. Lond., Spec. Publ. 325, 141–155.
[19] COCKS,R.L. and TORSVIK, T.H., 2020, Ordovician palaeogeography and climate change. Gondwana Research 100 (2021) 53–72.
[20] DAVOUDZADEH, M. and SCHMIDT, K.,1984, A Review of the Mesozoic Paleogeography and Paleotectonic Evolution of Iran. N. Jb. Geol. Palaont. Abh. 168 (2/3), 182-207.
[21] DZIK, J., 1976, Remarks on the evolution of Ordovician conodonts. Acta Palaeoritologica Polonica 21, 395-455.
[22] DZIK, J., 1994, Conodonts of the M_ojcza Limestone. 43–128. In DZIK, D., OLEMPSKA, E. and PISERA, A. (eds). Ordovician carbonate platform ecosystem of the Holy Cross Mountains. Palaeontologica Polonica, 53, 128.
[23] EPSTEIN, A.G., EPSTEIN, J.B. and HARRIS, L.D., 1977, Conodont color alteration — an index to organic metamorphism. United States Geological Survey Professional Paper, 995: 1–27.
[24] FINNEGAN, S., BERGMANN, K., EILER, J.M., JONES, D.S., FIKE, D.A., EISENMAN, I., HUGHES, N.C., TRIPATI, A.K. and FISCHER, W.W., 2011, The magnitude and duration of Late Ordovician–Early Silurian glaciation: Science, 331,903–906, https:// doi.org/10.1126/science.1200803.
[25] GANSSER, A. and HUBER, H., 1962, Geological observation in the central Elburz, Iran.Schweizeris chemineralogische und petrographische mitteilungen,42: 593-630.
[26] GHOBADIPOUR, M., WILLIAMS, M., VANNIER, J., MEIDLA ,T. and POPOV, L.E., 2006, Ordovician ostracods from east Central Iran.Acta Palaeontologica Polonica, 51: 551-560.
[27] GOLDMAN, D., SADLER , P.M., LESLIE , S.A., MELCHIN, M.J., AGTERBERG, F.P. and GRADSTEIN, F.M., 2020, The Ordovician Period, 631–694. In Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (eds) Geologic Time Scale 2020. Elsevier, Amsterdam. DOI 10.1016/B978-0-12.
[28] GONG, Q., WANG, X., ZHAO, L., GRASBY, S.E., CHEN, Z. Q., ZHANG, L., LI, Y., CAO, L., and LI, Z., 2017, Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction: Scien- tific Reports, 7, 5304, https://doi.org/10.1038/ s41598-017-05524-5.
[29] HAMEDI, M.A., 1995, Lower palaeozoic sedimentology and stratigraphy of the Kerman region.East- central Iran.-Unpub.Ph.D. thesis, Univ, Wollongong, Australia.
[30] HARTZ, H. and TORSVIK, T.H., 2002, Baltica upside: A new plate tectonic model for Rodinia and the Iapetus ocean. GEOLOGY. 30. (3): 255- 58.
[31] HUCKRIEDE .R., KURSTEN .M. and VENZLAFF , H., 1962, Zur geologie des Gebieteszwischen Kerman und Saghand (Iran). Beiheftezum geologischen Jahrbuch.51, 197.
[32] JAANUSSON , V., 1973, Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia 6, 11–34.
[33] JABLONSKI, D., 1991, Extinctions: A paleontological perspective: Science, 253, 754–757, https:// doi.org/10.1126/science.253.5021.754.
[34] JONES, D.S., MARTINI, A.M., FIKE, D.A. and KAIHO, K., 2017, A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia: Geology, 45, 631–634, https://doi.org/10.1130/G38940.1.
[35] KUMP, L.R. and ARTHUR , M.A., 1999, Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology 161, 181–198.
[36] LAPORTE, D.F., HOLMDEN, C., PATTERSON, W.P., LOXTON, J.D., MELCHIN , M.J., MITCHELL, C.E., FINNEY, S.C. and SHEETS, H.D., 2009, Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 276, 182–195.
[37] LEFEBVRE, B., GHOBADIPOUR, M. and NARDIN, E., 2005, Ordovician echinoderms from te Tabas and Damghan regions, Iran: palaeobiogeographica limplication.Bulletin de la societe geologique de France,176 (3):231-242.
[38] LESLIE, S.A., 2000, Mohawkian (Upper Ordovician) conodonts of Eastern North America and Baltoscandia. Journal of Paleontology 74, 1122–1147. DOI 10.1666/0022-3360(2000)0742.0.CO;2.
[39] LINDSTRÖM, M., 1960, A Lower-Middle Ordovician succession of conodont faunas: Internat. Geol. Congr., 21st Session Rept., Pt. 7, 88-96, 8 figs.
[40] LÖFGREN, A., 1978, Arenigian and Llanvirnian conodonts from Jämtland, northern Sweden. Fossils & Strata, 13, 1–129.
[41] MABILLARD, J.E. and ALDRIDGE, R.J., 1983, Conodonts from the Coralliferous Group (Silurian) of Marloes Bay, South-West Dyfed, Wales. Geologica et Palaeontologica 17, 29–43.
[42] MILLERl, J. F., 1969, Conodont fauna of the Notch Peak Limestone (Cambro- Ordovician), House Range, Utah: Jour. Paleontology, 43, 413-439, Pis. 63-66, 5 figs.
[43] NAZARI,H., 2006, Analyse de la tectonique recente et active dans l'Alborz Central et la region de Teheran:Approche morphotectonique et paleoseismologique. Science de la terre et de l'eau. Montpellier, Montpellier II: 247.
[44] NIELSEN, A.T., 2004, Ordovician sea level changes: A Baltoscandian perspective, in Webby, B.D., et al., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 84–93, https://doi.org/10.7312/webb12678-011.
[45] REITZ, E. and DAVOUDZADEH, M., 1995, Ordovician acritarchs from the Banestan, Kerman area, Central Iran; paleobiogeographical evidence for a warm water environment. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1995 (8), 488–500.
[46] RUTTNER, A., NABAVI, M. and HAJIAN, J., 1968, Geology of the Shirgesht area (Tabas area, east Iran). Reports of the geological survey of Iran,4: 1-133.
[47] STÖCKLIN, J.,1974, Northern Iran:Alborz Mountains.,.Geol.Soc.Lon.Special pub.4, 213-234.
[48] STÖCKLIN, J., 1977, Structural correlation of the Alpine ranges between Iran and central Asia. Soc. Geol. 8, 333-353.
[49] SEPKOSKI,Jr.J.J., 1981, A factor analytical description of the Phanerozoic marine fossil record.Paleobiology, 7: 36-53.
[50] SMOLAREK-LACH, J., MARYNOWSKI, L., TRELA, W. and WIGNALL, P.B., 2019, Mercury spikes indicate a volcanic trigger for the Late Ordovician mass extinction event: An example from a deep shelf of the peri- Baltic region: Scientific Reports,. 9, 3139, https:// doi.org/10.1038/s41598-019-39333-9.
[51] STAMPFLI, G. M., 2000, Tethyan oceans. Geological society,london,special publications 173, 1-23.
[52] SWEET, W.C., 1988, The Conodonta: morphology, taxonomy, paleoecology, and evolutionary history of a long-extinct animal phylum. Oxford Monographs on Geology and Geophysics, 10, Clarendon Press, Oxford, 212.
[53] TORSVIK,H. and COCKS,M., 2017, Earth History and Palaeogeography. Cambridge University Press 978-1-107-10532-4 .
[54] WANG, Z.H., ZHEN,Y.Y., BERGSTRÖM,S.M., ZHANG,Y.D. and WU, R.C., 2018, Ordovician conodont biozonation and biostratigraphy of North China.Australasian Palaeontological Memoirs 51,65.79.
[55] ZHEN,Y.Y., NICOLL,R.S., PERCIVAL,I.G., HAMEDI, M.A. and STEWART, I., 2001, Ordovician Rhipidognathid conodonts from Australia and iran. Journal of paleontology, 75 (1): 186–202.
.