بهبود مدیریت منابع در اینترنت اشیا با استفاده از محاسبات مه و الگوریتم بهینهسازی شیر مورچه
محورهای موضوعی : فناوری اطلاعات و ارتباطاتپیام شمس 1 , سیده لیلی میرطاهری 2 , رضا شهبازیان 3 , احسان آریانیان 4
1 - دانشگاه خوارزمی
2 - دانشگاه خوارزمی
3 - دانشگاه شهید بهشتی
4 - پژوهشگاه ارتباطات و فناوری اطلاعات
کلید واژه: اینترنت اشیا, محاسبات مه, الگوریتم بهینه سازی شیر مورچه, تخصیص منابع, ,
چکیده مقاله :
در این مقاله مدلی مبتنی بر الگوریتمهای فراابتکاری برای تخصیص بهینه منابعدر اینترنت اشیا مبتنی بر محاسبات مه پیشنهاد شده است. در مدل پیشنهادی، ابتدا درخواست کاربر بهصورت یک جریان کاری به سیستم داده میشود؛ تا بهازای هر درخواست ابتدا نیازمندیهای منابع (قدرت پردازش، حافظهی ذخیرهسازی و پهنای باند) استخراج میگردد. این مؤلفه وضعیت ترافیک درخواستی برنامه را از لحاظ بلادرنگ بودن تعیین میکند. درصورتیکه کاربرد مورد نظر بلادرنگ نباشد و در مقابل تأخیر تا حدودی مقاوم باشد، درخواست به محیط ابری ارجاع داده میشود، اما اگر برنامه کاربردی مورد نظر نیاز به پاسخگویی بلادرنگ داشته باشد و حساس به تأخیر باشد، بهصورت محاسبات مه با آن برخورد خواهد شد و به یکی از کلودلتها نگاشته خواهد شد. این این مرحله به منظور انتخاب بهترین راه حل در تخصیص منابع جهت سرویسدهی به کاربران محیط IoT، از الگوریتم بهینهسازی شیر مورچه استفاده شد. روش پیشنهادی در محیط نرمافزاری متلب شبیهسازی شده و برای ارزیابی عملکرد آن از پنج شاخص انرژی مصرفی سلولهای مه، زمان پاسخگویی، درجهی عدم تعادل سلولهای مه، تأخیر و پهنای باند استفاده گردیده است. بررسی یافتهها نشان میدهد که روش پیشنهادی، میزان انرژی مصرفی، نرخ تأخیر را در سلولهای مه، نرخ پهنای باند مصرفی، میزان تعادل بار و زمان پاسخگویی را در مقایسه با طرح پایه (ROUTER) به ترتیب 22، 18، 12، 22 و 47 درصد بهبود داده است.
In this paper, a model based on meta-heuristic algorithms for optimal allocation of IoT resources based on fog calculations is proposed. In the proposed model, the user request is first given to the system as a workflow; For each request, the resource requirements (processing power, storage memory, and bandwidth) are first extracted. This component determines the requested traffic status of the application in terms of real-time. If the application is not real-time and is somewhat resistant to latency, the request will be referred to the cloud environment, but if the application needs to respond promptly and is sensitive to latency, it will be dealt with as a fog calculation. It will be written to one of the Cloudletes. In this step, in order to select the best solution in allocating resources to serve the users of the IoT environment, the ant milk optimization algorithm was used. The proposed method is simulated in MATLAB software environment and to evaluate its performance, five indicators of fog cells energy consumption, response time, fog cell imbalance, latency and bandwidth have been used. The results show that the proposed method reduces the energy consumption, latency rate in fog cells, bandwidth consumption rate, load balance rate and response time compared to the base design (ROUTER) 22, 18, 12, 22 and 47, respectively. Percentage has improved.
