پیش بینی بار کاری ماشین های مجازی به منظور کاهش مصرف انرژی در مراکز داده ابری با استفاده از ترکیب مدل های یادگیری ژرف
محورهای موضوعی : فناوری اطلاعات و ارتباطات
زینب خداوردیان خداوردیان
1
,
حسین صدر
2
,
مژده نظری سلیماندارابی
3
,
سید احمد عدالت پناه
4
1 - واحد علوم و تحقیقات تهران
2 - هیات علمی
3 - مرکز تحقیقات قلب و عروق
4 - موسسه آموزش عالی آیندگان، تنکابن
کلید واژه:
چکیده مقاله :
افزایش تقاضا براي کاربردهاي مبتني بر ابر و استفاده ناکارآمد از منابع، موجب مصرف بيرویه انرژي در مراکز داده ابري شده است. مدیریت پویاي منابع در مراکز داده با هدف کاهش مصرف انرژي، از طریق پیشبیني بار کاري ماشین مجازي امکانپذیر است. پیشبیني بار کاري ماشین مجازي این امکان را ميدهد که ماشین مجازي متناسب با درخواست کاربران در زمان مناسب مهاجرت کند و در مصرف انرژي موثر باشد و منابع را به کارآمدترین روش تخصیص دهد. پیشبیني بار کاري ماشین مجازي ميتواند بر اساس الگوي درخواست کاربران باشد براي این منظور ميتوان ماشینهاي مجازي را بر اساس پیشبیني مصرف منابع )به عنوان مثال میانگین مصرف پردازنده( در کلاسهاي حساس یا غیر حساس به تأخیر دستهبندي کرد و سپس، ماشینهاي مجازي متناسب با در خواست کاربران را به آنها اختصاص داد. در واقع پیشبیني بار کاري و تحلیل پیشبیني به عنوان یک فرآیند اولیه براي مدیریت منابع )مانند کاهش تعداد مهاجرت در ادغام پویاي ماشین مجازي( باشد. از این رو در این مقاله از ترکیب شبکه عصبي پیچشي و واحد برگشتي دروازهدار بهمنظور پیشبیني بار کاري ماشینهاي مجازي مایکروسافت آزور استفادهشده است. مجموعه داده آزور یک مجموعه داده داراي برچسب است و بار کاري ماشینهاي مجازي در این مجموعه داده در دو برچسب حساس یا غیر حساس به تأخیر قرار دارند. در این مجموعه داده اکثر ماشینهاي مجازي داراي برچسب غیر حساس به تأخیر ميباشند؛ بنابراین بنابراین توزیع نمونهها در این مجموعه داده به صورت نامتوازن است از ین رو براي رفع این چالش از افزایش تصادفي نمونههاي کلاس اقلیت استفاده شده است. طبق نتایج حاصل از آزمایشها، روش پیشنهادي داراي دقت 42 / 94 است که نشاندهنده برتري مدل پیشنهادي نسبت به سایر مدلهاي پیشین است.
Cloud computing service models are growing rapidly, and inefficient use of resources in cloud data centers leads to high energy consumption and increased costs. Plans of resource allocation aiming to reduce energy consumption in cloud data centers has been conducted using live migration of Virtual Machines (VMs) and their consolidation into the small number of Physical Machines (PMs). However, the selection of the appropriate VM for migration is an important challenge. To solve this issue, VMs can be classified according to the pattern of user requests into Delay-sensitive (Interactive) or Delay-Insensitive classes, and thereafter suitable VMs can be selected for migration. This is possible by virtual machine workload prediction .In fact, workload predicting and predicting analysis is a pre-migration process of a virtual machine. In this paper, In order to classification of VMs in the Microsoft Azure cloud service, a hybrid model based on Convolution Neural Network (CNN) and Gated Recurrent Unit (GRU) is proposed. Microsoft Azure Dataset is a labeled dataset and the workload of virtual machines in this dataset are in two labeled Delay-sensitive (Interactive) or Delay-Insensitive. But the distribution of samples in this dataset is unbalanced. In fact, many samples are in the Delay-Insensitive class. Therefore, Random Over-Sampling (ROS) method is used in this paper to overcome this challenge. Based on the empirical results, the proposed model obtained an accuracy of 94.42 which clearly demonstrates the superiority of our proposed model compared to other existing models.
