بررسی تأثیر تغییرات آب و هوایی بر محیط زیست و کشاورزی
محورهای موضوعی : ارزیابی اثرات زیست محیطیبهاره رفیعی 1 , حامد کیومرثی 2 , رضا ناصری هرسینی 3 , سید محمدرضا مهدویان 4
1 - عضو هیئت علمی، بخش تحقیقات گیاه پژشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران
2 - بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران
3 - عضو هیئت علمی، بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران
4 - بخش تحقیقات اقتصادی-اجتماعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گیلان، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران
کلید واژه: امنیت غذایی, تغییر اقلیم, تنوع زیستی, زیست بوم, کشاورزی پایدار,
چکیده مقاله :
طی قرن گذشته، علم و فناوری رشد و توسعه چشم گیری داشته و این پیشرفت در کنار تمامی مزایا و ارزش های افزوده برای کیفیت زندگی بشر، اثرات نامناسبی بر محیط زیست به همراه داشته است. متأسفانه، درگیری بشر با مشکلاتی که برای کره زمین ایجاد کرده است، از جمله جنگ ها و بیماری های جدید، سبب توجه کمتر به بررسی تأثیر تغیرات آب و هوایی بر محیط زیست و به ویژه فعالیت های کشاورزی وابسته به آن شده است. اگر بخش کشاورزی در پرتو چالش تغییرات آب و هوایی قرار گیرد و قادر به تأمین نیازهای غذایی بشر نباشد، زندگی به نقطه پایانی خویش نزدیک خواهد شد. فعالیت های کشاورزی از یک سوی در معرض این تغییرات قرار دارند و از طرف دیگر با به جای گذاشتن تأثیرات احتمالی منفی بر محیط زیست به این تغییرات دامن می زنند. تهدید امنیت غذایی، کاهش تنوع زیستی، از بین رفتن خاک، کاهش منابع آبی و تبدیل جنگل ها به مزارع و سپس نابودی این مزارع، زمین را به منطقه ای غیرقابل حیات همراه با طوفان ها، سیل ها و تغییرات دمایی غیرقابل پیش بینی تبدیل خواهد کرد. از این رو، بررسی تأثیر مؤلفه های تغییرات آب و هوایی بر زیست بوم ها و گونه های مختلف که کشاورزی را تحت شعاع قرار می دهند، می تواند گامی به سوی دستیابی به سازوکارهای جدید مدیریتی به منظور کاهش و سازگاری با این تغییرات و رسیدن به محیط زیست و کشاورزی پایدار باشد.
During the last century, science and technology have grown and developed significantly, however, this development, along with all the advantages and added values for the quality of human life, has brought inappropriate effects on the environment. Unfortunately, the human conflict with the problems which has created for the planet, including wars and new diseases, has caused less attention to the impact of climate change on environment and especially the related agriculture activities. If the agricultural sector exposed by climate change and will not be able to meet human food needs, life will be near to its end point. Agricultural activities are not only exposed to these changes, but also by leaving possible negative effects on environment lead to these changes. Threatening food security, the reduction of biological diversity, the loss of soil, the reduction of water resources, and the conversion of forests into farms and their gradual destruction, turn the earth into an unlivable area with the unpredictable occurrence of storms, floods and temperature changes. Therefore, investigating the impact of climate change and its components on different ecosystems and species that affect agriculture can be a step towards achieving new management mechanisms to reduce and adapt to these changes and achieving sustainable environment and agriculture.
حیدری، ن. (1396). تغییر اقلیم و راهکارهای سازگاری با آن در کشاورزی. نشریه مدیریت آب در کشاورزی. 4(2): 13-26.
حیدری، ن. (1397). مسائل و راهکارهای تسکین تغییر اقلیم از جنبه¬های مدیریت تولید در کشاورزی. نشریه آب و توسعه پایدار. 5(1): 45-54.
رضوی، م. (1388). تغییر آب و هوا و تأثیر آن بر کشاورزی. ویژه نامه تغییر اقلیم. صفحه 27-23.
سرابیان، ل.؛ نیکپور، ع. (1388). نقش کشاورزی طبیعت¬مدار بر کاهش تغییر اقلیم. ویژه نامه تغییر اقلیم، صفحه 20-15.
قیاسی، م.؛ امیرنیا، ر.؛ فاضلی منش، م. (1394). اثرات تغییر اقلیم بر کشاورزی رایج. سومین همایش ملی تغییر اقلیم و تأثیر آن بر کشاورزی و محیط زیست. ارومیه. 525-521.
کیانی قلعه سرد، س.؛ شهرکی، ج.؛ اکبری، ا.؛ سردار شهرکی، ع. (1398). اثر تغییرات اقلیمی بر تولید بخش کشاورزی ایران: مطالعه موردی محصول گندم. نشریه پژوهش¬های کاربردی زراعی. 32(4): 127-109.
محمد قره¬قول، آ.؛ احمدی، س. م. (1395). بررسی تشديد مخاطرات تغييرات اقليمی و تهديد امنيت غذايی با آسيب به محيط زيست كشاورزي. نشریه سنبله. 254، 10 صفحه.
محمودی میمند، م.، مظاهری، م. (1393) تغییرات اقلیمی و ایمنی غذایی. 7(2): 21-33.
مرادی، ا.؛ امینیان، م. (1391). میزان نشر گازهاي گلخانه¬ای ايران در سال 1389. نشریه نشاء علم. 3(1): 59-55.
میرزایی، م.؛ گرجی، م.؛ مقیسه، ا.؛ اسدی، ح.؛ رضوی طوسی، ا. (1400). مدیریت پایدار خاک و نقش آن در کاهش انتشار گازهای گلخانه¬ای. نشریه علمی مدیریت اراضی. 9(2): 187-205.
Angilletta Jr, M. J. (2009). Thermal adaptation: a theoretical and empirical synthesis. Oxford online edn, Oxford Academic. DOI:10.1093/acprof:oso/9780198570875.001.1
Ayres, M. P., & Lombardero, M. J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 262(3), 263-286.
Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J.C., & Farrar, J. (2002). Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1-16.
Belanger, G., Rochette, P., Castonguay, Y., Bootsma, A., Mongrain, D., & Ryan, D. A. J. (2002). Climate change and winter survival of perennial forage crops in eastern Canada. Agronomy Journal, 94, 1120-1130.
Black, S. H. (2018). Insects and climate change: Variable responses will lead to climate winners and losers. In: Encyclopedia of the Anthropocene, 95-101. https://doi.org/10.1016/b978-0-12-809665-9.10265-4 Bruinsma, J. (2003). World Agriculture: Towards 2015/2030: an FAO perspective. Earthscan, London and FAO, Rome, London, 432 pp.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., & Thornton, P. (2013). Carbon and Other Biogeochemical Cycles. In: Climate Change 2013. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 465-570.
Delcour, D., Spanoghe, P., & Uyttendaele, M. (2015). Literature review: Impact of climate change on pesticide use. Food Research International, 68, 7-15.
Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B. & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361, 916-919.
Diamond, S. E., Chick, L., Penick, C. A., Nichols, L. M., Cahan, S. H., Dunn, R. R., & Gotelli, N. J. (2017). Heat tolerance predicts the importance of species interaction effects as the climate changes. Integrative and Comparative Biology, 57(1), 112-120.
Dicke, M. (2018). Insects as feed and the Sustainable Development Goals. Journal of Insects as Food and Feed, 4, 147-156.
Drake, B. G., Gonzàlez-Meler, M. A. & Long, S. P. (1997). More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Biology, 48, 609-639.
Dusenge, M. E., Duarte, A. G., & Way, D. A. (2019). Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist, 221, 32-49.
Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. & White, L. L. (2014). Climate Change: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects. Contribution of Working Group II to the 5th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1-32. https://doi.org/10.1017/CBO9781107415379.003
Filazzola, A., Matter, S. F., & MacIvor, J. S. (2021). The direct and indirect effects of extreme climate events on insects. Science of the Total Environment, 769, 145-161.
Forister, M. L., McCall, A. C., Sanders, N. J., Fordyce, J. A., Thorne, J. H., O’Brien, J., & Shapiro, A. M. (2010). Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proceedings of the National Academy of Sciences, 107(5), 2088-2092.
Gibbs, A. G., Fukuzato, F., & Matzkin, L. M. (2003). Evolution of water conservation mechanisms in Drosophila. Journal of experimental biology, 206(7), 1183-1192.
Gullino, M. L., Albajes, R., Al-Jboory, I., Angelotti, F., Chakraborty, S., Garrett, K. A., Hurley, B. P., Juroszek, P., Lopian, R., & Makkouk, K. (2022). Climate change and pathways used by pests as challenges to plant health in agriculture and forestry. Sustainability, 14(19), 12421. https://doi.org/10.3390/su141912421
Gutschick, V. P. (2007). Plant acclimation to elevated CO2 from simple regularities to biogeographic chaos. Ecological Modelling, 200, 433-451.
Hadley, N. F. (1994). Water relations of terrestrial arthropods Academic Press. San Diego, CA, 356.
Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE, 12(10), e0185809.
Hatfield J. L., & Prueger J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10.
Hedman, S., & Correa, R. (2022). Animals vital to achieving sustainable development goals. Avalable at: https:// www. ifaw. org/international/ press-releases/ animals- vital- achieving-sdgs
Ileke, K. D., & Abajue, M. C. (2020). Understanding and mitigating the impact of climate change on insect pests and food security. The impact of climate change on insect pests and food security. 30 pp.
IPCC, 2018. Intergovernmental Panel on Climate Change. Special report on global warming of 1.5◦C. “Summary for Policymakers”. https://report.ipcc.ch/sr15/pdf /sr15_spm_final.pdf.
Khan, S., Anwar, S., Ashraf, M. Y., Khaliq, B., Sun, M., Hussain, S., & Alam, S. (2019). Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants, 8(11), 508-517.
Kioumarsi, H., Jafari Khorshidi, K., Zahedifar, M., Seidavi, A. R., Yahaya, Z. S., Rahman W. A., & Mirhosseini, S. Z. (2008). Estimation of relationships between components of carcass quality and quantity in taleshi lambs. Asian Journal of Animal and Veterinary Advances, 3(5), 337-343. 10.3923/ajava.2008.337.343.
Kioumarsi, H., Yahaya, Z. S., Rahman W. A., & Chandrawathani, P. (2011). A new strategy that can improve commercial productivity of raising boer goats in malaysia. Asian Journal of Animal and Veterinary Advances, 6(5), 476-481. 10.3923/ajava.2011.476.481.
Laštůvka, Z. (2009). Climate change and its possible influence on the occurrence and importance of insect pests. Plant Protection Science, 45, S53-S62
Leger, R. J. S. (2021). Insects and their pathogens in a changing climate. Journal of Invertebrate Pathology, 184, 107644.
Lister, B. C., & Garcia, A. (2018). Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences, 115(44), E10397-E10406.
Losey, J. E., & Vaughan, M. (2006). The economic value of ecological services provided by insects. Bioscience, 56(4), 311-323.
Malhi G. S., Kaur, M., & and Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318
Mavhura, E., Manatsa, D., & Matiashe, M. (2017). Adapting smallholder farming to climate change and variability: household strategies and challenges in Chipinge district, Zimbabwe. Climate Change, 3, 903-913.
Menzel, F., & Feldmeyer, B. (2021). How does climate change affect social insects? Current Opinion in Insect Science, 46, 10-15.
Menzel, F., Morsbach, S., Martens, J. H., Räder, P., Hadjaje, S., Poizat, M., & Abou, B. (2019). Communication versus waterproofing: the physics of insect cuticular hydrocarbons. Journal of Experimental Biology, 222(23), jeb210807.
Mitchell, J. P., Reicosky, D. C., Kueneman, E. A., Fisher, J., & D. Beck, (2019). Conservation agriculture systems. CAB Reviews, 14(001), 1-25.
Morgan, J. A., Follett, R. F., Allen, L. H., Jr., Grosso, S. D., Derner, J. D., Dijkstra, F., Franzluebbers, A., Fry, R., Paustian, K., & Schoeneberger, M. M. (2010). Carbon sequestration in agricultural lands of the United States. Journal of Soil and Water Conservation, 65(1), 6A-13A.
Moruzzo, R., Mancini, S., & Guidi, A. (2021). Edible insects and sustainable development goals. Insects, 12, 557-564.
NOAA. National Oceanic and Atmospheric Administration (2019). Global Climate Report. https://www.ncdc.noaa.gov/sotc/global/201913.
NOAA. National Oceanic and Atmospheric Administration. (2020). Climate at a Glance: Global Time Series.
Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239-262.
Oonincx, D. G. A. B., van Itterbeeck, J., Heetkamp, M. J. W., van den Brand, H., van Loon, J. J. A., & van Huis, A. (2010). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLOS ONE, 5, e14445.
Pachauari, R. K., & Reisinger, A. (2007). Climate Change. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report on Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland.
Pareek, A., Meena, B. M., Sharma, S., Tetarwal, M. L., Kalyan, R. K., &Meena, B. L. (2017). Impact of climate change on insect pests and their management strategies, IOP Publishing Ltd, Temple Circus, UK, 254–275.
Parmesan, C., &Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature Cell Biology, 421, 37-42.
Rafferty, N. E. (2017). Effects of global change on insect pollinators: multiple drivers lead to novel communities. Current Opinion in Insect Science, 23, 22-27.
Reineke, A., & Thiéry, D. (2016). Grapevine insect pests and their natural enemies in the age of global warming. Journal of Pest Science. 16pp
Salman, N. A. (2021). Impact of climate change on fisheries and aquaculture activities in southern Iraq. Journal of Survey in Fisheries Sciences, 7(3), 41-50.
Sánchez-Lugo, A., Morice, C. P., Berrisford, P., & Argüez, A. (2017). Global surface temperatures [in “State of the Climate in 2016”]. Bulletin of the American Meteorological Society, 98(8), S11-S13.
Sharma, H. C., Srivastava, C. P., Durairaj, C., & Gowda, C. L. L. (2010). Pest management in grain legumes and climate change. In: Yadav, S. S., McNeil, D. L., Redden, R., Patil, S. A. (Eds.), Climate Change and Management of Cool Season Grain Legume Crops. Springer Science + Business Media, Dordrecht, The Netherlands, 115-140.
Skendžíć, S., Zovko M., Živkovíć I. P., Lešić V. and Lemí D. (2021). The impact of climate change on agricultural insect pests. Insects, 12, 440.
Smit, B., & Pilifosova, O. (2003). Adaptation to climate change in the context of sustainable development and equity. Sustainable Development, 879-906.
Sofi, P. A., Baba, Z. A., Hamid, B., & Meena, R. S. (2018). Harnessing soil rhizobacteria for improving drought resilience in legumes. In: Legumes for Soil Health and Sustainable Management. pp. 235-275.
Stange, E. E., & Ayres, M. P. (2010). Climate change impacts: insects. In: ELS. https://doi.org/10.1002/9780470015902.a0022555.
Sun, Y. C., Yin, J., Chen, F. J., Wu, G., & Ge, F. (2011). How does atmospheric elevated CO2 affect crop pests and their natural enemies? Case histories from China. Insect Science, 18(4), 393-400.
Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N., & Robertson, G. P. (2011). Agricultural management and soil carbon storage in surface vs. deep layers. Soil Science Society of America Journal, 75(1), 92-101.
Tubiello, F., Rosenzweig, C., Goldberg, R., Jagtap, S., & Jones, J. (2002). Effects of climate change on US crop production: Simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus. Climate Research, 20, 259-270.
van Huis, A. (2013). Potential of insects as food and feed in assuring food security, Annual Review of Entomology, 58(1), 563-583.
Wang, C., Guo, L., Chuanli, W., & Wang, Z. (2012). Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Systematic Biology, 6, S9.
War, A. R., Taggar, G. K., War, M. Y., & Hussain, B. (2016). Impact of climate change on insect pests, plant chemical ecology, tritrophic interactions and food production. International Journal of Clinical and Biological Sciences, 1(2), 16-29.
Yadav, R. K., Yadav, M. R., Kumar, R., Parihar, C. M., Yadav, N., Bajiya, R., Ram, H., Meena, R. K., Yadav, D. K., & Yadav, B. (2017). Role of biochar in mitigation of climate change through carbon sequestration. International Journal of Current Microbiology and Applied Science, 6(4), 859-866.
Yoro, K.O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. Sawston, UK, 3-28.
Zavala, J. A., Nabity, P. D., & DeLucia, E. H. (2013). An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annual Review of Entomology, 58, 79-97.
Zayan, S. A. (2019). Impact of climate change on plant diseases and IPM strategies. In: Plant Pathology and Management of Plant Diseases, Topolovec-Pintaríc, S., Ed., Intechopen: London, UK, 13pp.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., & Ciais, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114, 9326-9331.