حسگر دما بر اساس موجبر شکافی پلاسمونی تراهرتز تزویجشده به تشدیدگر
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشكده فنی و مهندسی، دانشگاه آیت الله بروجردی
کلید واژه: ایندیم اَنتیموناید, پلاسمونی, تراهرتز, تشدیدگر, حسگر دما,
چکیده مقاله :
در این مقاله، عملکرد یک حسگر دما بر اساس ساختار پلاسمونی شامل یک موجبر شکافی تزویجشده به یک تشدیدگر بررسی شده است. نتایج بر اساس وابستگی معادله پاشندگی ساختار و در نتیجه فرکانس تشدید تشدیدگر به ضریب گذردهی الکتریکی ماده سازنده ساختار یعنی ایندیم اَنتیموناید بهدست آمده که ضریب گذردهی یادشده هم به دمای محیط وابسته است. طراحی ساختار برای بخشی از فرکانسهای طیف تراهرتز انجام شده و نتایج شبیهسازی، بیانگر رابطهای تقریباً خطی بین فرکانسهای تشدید و دمای محیط در بازه دمایی 260 تا 350 درجه کلوین است. همچنین معیاری برای بررسی حساسیت و بازه دمایی عملکردی حسگر ارائهشده بیان گردیده است. حساسیت این حسگر در بازه دمایی ذکرشده به میزان 10-10× 1 درجه کلوین بر هرتز محاسبه شده و حد تفکیک اندازهگیری دمای آن به حد تفکیک اندازهگیری فرکانس سامانه آشکارساز وابسته است. این حسگر با ساختار ساده خود میتواند در سامانههای متعدد شیمیایی و زیستی بهکار گرفته شود.
In this paper, the performance of a temperature sensor based on plasmonic structure including a slot waveguide coupled with a stub resonator has been investigated. The results have been attained based on the dependency of dispersion equation, and so, the resonance frequency of the stub, to electric permittivity of the constructing material of the structure, InSb, which is also dependent to the ambient temperature. The design of the structure has been carried out for frequencies in terahertz spectra. The simulation results confirm an approximate linear relation between the resonance frequencies and ambient temperature, between 260-350 Kelvin. Also, a criterion has been assigned for evaluation the sensitivity and the performance temperature span of the proposed sensor. The calculated sensitivity is about 1×10-10 Kelvin per Hertz in the mentioned temperature interval. The sensor measurement resolution depends on the frequency resolution of the detection system. This simple sensor can be utilized in various chemical and bio systems.
[1] P. Tassin, T. Koschny, and C. M. Soukoulis, "Graphene for terahertz applications," Science, vol. 341, no. 6146, pp. 620-621, Aug. 2013.
[2] A. Dolatabady, N. Granpayeh, and M. Abedini, "Frequency-tunable logic gates in graphene nano-waveguides," Phot. Netw. Commun., vol. 39, no. 3, pp. 187-194, Jun. 2020.
[3] J. Kitagawa, Y. Kadoya, M. Tsubota, F. Iga, and T. Takabatake, "Terahertz time-domain spectroscopy of photo-induced carriers in YTiO3," J. Magn. Magn. Mater., vol. 310, no. 2, pt 1, pp. 913-915, Mar. 2007.
[4] H. Yoshida, et al., "Terahertz sensing method for protein detection using a thin metallic mesh," Appl. Phys. Lett., vol. 91, Article ID: 253901, Dec. 2007.
[5] M. Naftaly, J. F. Molloy, G. V. Lanskii, K. A. Kokh, and Y. M. Andreev, "Terahertz time domain spectroscopy for textile identification," Appl. Opt., vol. 52, no. 19, pp. 4433-4437, Jun. 2013.
[6] T. Kleine-Ostmann and T. Nagatsuma, "A review on terahertz communications research," J. Infrared Millim. THz Wave, vol. 32, pp. 143-171, Feb. 2011.
[7] A. Dolatabady, N. Granpayeh, and M. Salehi, "Ferrite loaded graphene based plasmonic waveguide," Opt. Quant. Electron., vol. 50, Article ID: 345, 11 pp., Sept. 2018.
[8] J. Tao, B. Hu, X. Y. He, and Q. J. Wang, "Tunable subwavelength terahertz plasmonic stub waveguide filters," IEEE Trans. Nanotechnol., vol. 12, no. 6, pp. 1191-1197, Nov. 2013.
[9] J. R. Hu and J. S. Li, "Ultra-compact 1×8 channel terahertz wave power splitter," J. Infrared Millim. THz Wave, vol. 37, pp. 729-736, Aug. 2016.
[10] A. K. Sharma and D. Gupta, "Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor," Appl. Opt., vol. 45, pp. 151-161, Jan. 2006.
[11] E. A. Velichko, "Evaluation of a graphene-covered dielectric microtube as a refractive-index sensor in the terahertz range," J. Opt., vol. 18, Article ID: 035008, Feb. 2016.
[12] M. Aslinezhad, "High sensivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band," Opt. Commun., vol. 463, Article ID: 125411, May 2020.
[13] L. L. Xu, Y. Gong, Y. X. Fan, and Z. Y. Tao, "A high-resolution terahertz electric field sensor using a corrugated liquid crystal waveguide," Crystals, vol. 9, Artivle ID: 302, 2019.
[14] A. Dolatabady and N. Granpayeh, "Plasmonic magnetic sensor based on graphene mounted on a magneto-optic grating," IEEE Trans. Magn., vol. 54, no. 2, pp. 1-5, Feb. 2018.
[15] S. K. Ozdemir and G. T. Sayan, "Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor," J. of Lightwave. Technol., vol. 21, no. 3, pp. 805-814, Mar. 2003.
[16] J. L. Xue, L. L. Xu, T. T. Wang, Y. X. Fan, and Z. Y. Tao, "Terahertz thermal sensing by using a defect-containing periodically corrugated gold waveguide," Appl. Sci., vol. 10, Article ID: 4365, Jun. 2020.
[17] Y. Ma, et al., "Mach-Zehnder interferometer-based integrated terahertz temperature sensor," IEEE J. Sel. Top. Quantum Electron, vol. 23, no. 4, Article ID: 4601607, Jul./Aug. 2017.
[18] G. Wang, T. Lang, and Z. Hong, "Metallic metamaterial terahertz sensors for simultaneous measurement of temperature and refractive index," Appl. Opt., vol. 59, no. 18, pp. 5385-5390, 2020.
[19] T. Huang, et al., "Design of highly sensitive interferometric sensros based on subwavelength grating waveguides operating at the dispersion turning point," J. Opt. Soc. Am. B, vol. 38, pp. 2680-2686, Sept. 2021.
[20] J. Feng, C. Chen, X. Sun, and H. Peng, "Implantable fiber biosensors based on carbon nanotubes," Acc. Mater. Res., vol. 2, no. 3, pp. 138-146, Jan. 2021.
[21] H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Opt. Express., vol. 18, no. 17, pp. 17922-12927, 2010.
[22] X. Zhang, "Terahertz surface plasmonic waves: a review," Adv. Photon., vol. 2, Article ID: 014001, Jan. 2020.
[23] A. Hamouleh-Alipour, A. Mir, and A. Farmani, "Analytical modeling and design of a graphene metasurface sensor for thermo-optical detection of terahertz plasmons," IEEE Sens., vol. 21, no. 4, pp. 4525-4532, 15 Feb. 2021.
[24] A. Dolatabady and N. Granpayeh, "Nanoscale temperature sensor based on plasmonic waveguides with nanocavity resonator," in Proc. 2nd Iranian Conf. of Electromagnetic Engineering, pp. 663-667, Tehran, Iran, 8-9 Jan. 2014.
[25] G. Liu, M. Han, and W. Hou, "High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity," Opt. Express, vol. 23, no. 6, pp. 7237-7247, Mar. 2015.
[26] J. L. Kennedy and N. Djeu, "Operation of Yb: YAG fiber-optic temperature sensor up to 1600 °C," Sens. Actuators A: Phys., vol. 100, no. ???, pp. 187-191, Sep. 2002.
[27] Q. Rong, et al., "A miniature fiber-optic temperature sensor based on a Fabry-Perot interferometer," J. Opt., vol. 14, Article ID: 045002, Apr. 2012.
[28] Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, "Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid," IEEE Photonics J., vol. 6, Article ID: 6801307, Jun. 2014.
[29] Y. Peng, J. Hou, Z. Huang, and Q. Lu, "Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber," Appl. Opt., vol. 51, no. 26, pp. 6361-6367, 2012.
[30] Q. Liu, S. Li, H. Chen, J. Li, and Z. Fan, "High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film," Appl. Phys. Express, vol. 8, Article ID: 046701, Mar. 2015.
[31] M. Aslam Mollah, S. M. Riazul Islam, M. Yousufali, L. F. Abdulrazak, M. Biplob Hossain, and I. S. Amiri, "Plasmonic temperature sensor using D-shaped photonic crystal fiber," Results Phys., vol. 16, Article ID: 102966, Mar. 2020.
[32] J. Zhu and G. Jin, "Detecting the temperature of ethanol based on Fano resonance spectra obtained using a metal-insulator-metal waveguide with SiO2 branches," Opt. Mater. Express, vol. 11, no. 9, pp. 2787-2799, 2021.
[33] J. F. Bradley, D. B. Leviton, and T. J. Madison, "Temperature-dependent refractive index of silicon and germanium," Proc. of the SPIE 6273, Optomechanical Technologies for Astronomy, 62732J, 2006.
[34] C. L. Davies, J. B. Patel, C. Q. Xia, L. M. Herz, and M. B. Johnston, "Temperature-dependent refractive index of quartz at terahertz frequencies," J. Infrared Millim. Terahertz Waves, vol. 39, no. 12, pp. 1236-1248, Dec. 2018.
[35] M. Oszwalldowski and M. Zimpel, "Temperature-dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb," J. Phys. Chem. Solids, vol. 49, no. 10, pp. 1179-1185, 1988.
[36] X. Dai, Y. Xiang, and S. Wen, "Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb," J. Appl. Phys., vol. 109, Article ID: 053104, Mar. 2011.
[37] H. Liu, G. Ren, Y. Gao, B. Zhu, B. Wu, H. Li, and S. Jian, "Tunable terahertz plasmonic perfect absorber based on T-shaped InSb array, " Plasmonics, vol. 11, no. 2, pp. 411-417, 2016.
[38] X. Luo, X. Zhai, L. Wang, Q. Lin, and J. Liu, "Tunable terahertz narrow-band plasmonic filter based on optical Tamm plasmon in dual-section InSb slot waveguide," Plasmonics, vol. 12, no. 2, pp. 509-514, Jun. 2016.
[39] F. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, 3rd Ed. Artech House, Boston, MA, USA, 2005.
[40] A. Dolatabady and N. Granpayeh, "Tunable far-infrared plasmonically induced transparency in graphene based nano-structurers," J. Opt., vol. 20, Article ID: 075001, Jun. 2018.
[41] C. Manolatou, M. J. Khan, and S. Fan, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron., vol. 35, no. 9, pp. 1322-1331, Sept. 1999.
[42] A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, "Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure," Opt. Express, vol. 18, no. 6, pp. 6191-6204, 2010.
[43] H. W. Huber, H. Richter, and M. Wienold, "High-resolution terahertz spectroscopy with quantum-cascade lasers," J. Appl. Phys., vol. 125, Article ID: 151401, Jun. 2019.
[44] J. M. Wheeler, et al., "The plasticity of indium antimonide: insights from variable temperature, strain rate jump micro-compression testing," Acta Materialia, vol. 106, pp. 283-289, Mar. 2016.