شکلدهی وفقی پرتو آکوستیکی با روش بهبودیافته تفاضلی
محورهای موضوعی : مهندسی برق و کامپیوتر
1 - دانشكده مهندسی برق و كامپيوتر، دانشگاه صنعتی قم، ایران
2 - دانشكده مهندسی برق و كامپيوتر، دانشگاه صنعتی قم، ایران
کلید واژه:
چکیده مقاله :
شکلدهندههای پرتو تفاضلی عملکرد مؤثری در کاربردهای پهنباند نظیر کاربردهای آکوستیکی دارند؛ اما دارای بهره نویز سفید محدودی هستند. در این مقاله بهمنظور بهبود بهره نویز سفید شکلدهنده پرتو تفاضلی، یک الگوریتم شکلدهنده تفاضلی بر مبنای وزندهی وفقی ارائه شده که از روش شکلدهی پرتو پاسخ کمینه واریانس بدون اعوجاج (MVDR) بهره میگیرد. به این منظور، ابتدا شکلدهی پرتو تفاضلی در دو مرحله اجرا شده که در مرحله اول، تفاضل مکانی مشاهدهها بهدست آمده و در مرحله دوم شکلدهنده پرتو بهینه گردید. سپس با محاسبه ضرایب و تلفیق شکلدهندههای پرتو تفاضلی و MVDR، شکلدهنده پرتو وفقی پیشنهادی بهدست آمد. در شکلدهنده پیشنهادی، سهم روش تفاضلی و روش MVDR در ایجاد سیگنال خروجی توسط ضریب تلفیق وفقی که تابع فرکانس، فاصله بین میکروفنها، زاویه هدف و تعداد میکروفنها است، تعیین میگردد. شکلدهنده پرتو پیشنهادی با درنظرگرفتن چهار میکروفن و فاصله دو سانتیمتری بین میکروفنها منجر به بهبود بهره نویز سفید به مقدار 35 دسیبل و بهره SNR به مقدار 18 دسیبل نسبت به شکلدهنده پرتو تفاضلی در فرکانس 1 کیلوهرتز میشود. همچنین فاکتور جهتدهی در الگوریتم وفقی پیشنهادی به میزان 5/3 دسیبل نسبت به شکلدهنده پرتو تفاضلی بهبود پیدا کرده است.
Differential beamformers exhibit effective performance in broadband applications, such as acoustic applications, but they have limited white noise gain. To address this limitation, this paper introduces an adaptive weighting-based algorithm designed to enhance the white noise gain of the differential beamformer by leveraging the minimum variance distortionless response (MVDR) beamforming technique. For this purpose, differential beamforming is implemented in two stages: in the first stage, the spatial difference of observations is obtained, and in the second stage, the beamformer is optimized. Subsequently, by calculating the coefficients and combining the differential and MVDR beamformers, the proposed adaptive beamformer is derived. In this beamformer, to construct the output signal, the contribution of the differential and MVDR methods is dynamically adjusted using an adaptive combination coefficient, which is a function of frequency, microphone inter-distance, target angle, and the number of microphones. The proposed beamformer, considering four microphones spaced 2 cm apart reveals a remarkable enhancement in white noise gain by 35 dB and SNR gain by 18 dB at a frequency of 1 kHz. Additionally, the proposed adaptive algorithm demonstrates a 3.5 dB improvement in directivity factor over its differential counterpart.
