کاربرد نانوالیاف الکتروریسی شده به منظورحذف آلاینده های گازی
محورهای موضوعی : اقتصاد محیط زیست
1 - دانشگاه گلستان
کلید واژه: آلاینده های گازی, دی اکسید کربن, جاذب, نانوالیاف, الکتروریسی,
چکیده مقاله :
دی اکسید کربن مهمترین گاز گلخانه ای است که به مقدار زیاددرجو زمین منتشر می شود. این مقدار زیاد دی اکسید کربن درجو مشکلات عظیمی را ایجاد می کند که بر زندگی انسان تأثیر گذاراست مانندگردبادشدید، طوفان، خشکسالی و باران های اسیدی. بخش اصلی انتشاردی اکسید کربن از احتراق سوختهای فسیلی حاصل می شود که منبع اصلی انرژی مورد استفاده برای تأمین تقاضای انرژی بشردر حال حاضر و آینده نزدیک است. تقریباً 85٪ انرژی مصرفی انسان از طریق سوختهای فسیلی تأمین میشود. در همین راستا، در سال های اخیر به منظور تصفیه هوا و حذف دی اکسید کربن، روش های مختلفی به صورت گسترده مورد مطالعه قرار گرفته، یکی از این روش ها جذب سطحی و استفاده از جاذب ها می باشد. در سال های اخیر، غشاهای نانوالیاف به عنوان جاذب آلاینده بسیار مورد توجه قرار گرفته است که در مقایسه با جاذب های معمولی، از بسیاری جهات مانند ساختار متخلخل، سطح ویژه بالا، شار نفوذ و انتخاب پذیری بالا، افت فشار پایین، انعطاف پذیری بالا و جذب هدفمند،برتری دارند. بنابراین، غشاهای نانوالیاف پتانسیل بسیار خوبی برای جذب و جداسازی آلاینده های گازی مانند دی اکسید کربن از هوا دارند. علاوه بر نسبت سطح به حجم بالا، نانوالیاف اصلاح شده دارای گروه های عاملی مختلفی هستند که عملکرد آن ها را بهبود میبخشند.در این مقاله، بررسی کلی از آثار منتشر شده در دهه گذشته در موردتوسعه غشاهای نانوالیاف متخلخل مبتنی بر الکتروریسی برای حذف کارآمد دی اکسید کربن انجام شده است.
Carbon dioxide is the most important greenhouse gas that is released in large quantities into the atmosphere. Excess carbon dioxide in the atmosphere is a problem for earth and increase the temperature and creates problems that affect human existence, such as severe tornadoes, storms, floods, droughts and acid rain. The largest source of outdoor CO2 is fossil fuel combustion, which are the main source of energy used to meet human energy demand now and in the near future. In recent years, nanofiber membranes have been highly regarded as pollutant adsorbents compared to conventional adsorbents, they have properties such as porous structure, high specific surface area, high penetration flux and selectivity, low pressure drop, high flexibility and targeted adsorption. So, electrospun nanofiber membranes have excellent potential for adsorption and separation of carbon dioxide from the air. In addition to the extremely high surface to volume ratio, modified electrospun nanofibers have different functional groups that improve their performance. Therefore, electrospun nanofiber membranes have excellent potential for adsorption and separation of carbon dioxide from the air
[1] Xing, W., Liu, C., Zhou, Z., Zhang, L., Zhou, J., Zhuo, S., & Qiao, S. Z. (2012). Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy & Environmental Science, 5(6), 7323-7327. https://doi.org/10.1039/C2EE21653A.
[2] Li, B., Duan, Y., Luebke, D., & Morreale, B. (2013). Advances in CO2 capture technology: A patent review. Applied Energy, 102, 1439-1447. https://doi.org/10.1016/j.apenergy.2012.09.009.
[3] Wang, X., Ding, B., Yu, J., & Wang, M. (2011). Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine. Journal of Materials Chemistry, 21(40), 16231-16238. https://doi.org/10.1039/C1JM13037D.
[4] Kelemen, P. B., McQueen, N., Wilcox, J., Renforth, P., Dipple, G., & Vankeuren, A. P. (2020). Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review and new insights. Chemical Geology, 550, 119628. https://doi.org/10.1016/j.chemgeo.2020.119628.
[5] Song, C., Liu, Q., Ji, N., Deng, S., Zhao, J., Li, Y., & Li, H. (2018). Alternative pathways for efficient CO2 capture by hybrid processes—a review. Renewable and Sustainable Energy Reviews, 82, 215-231. https://doi.org/10.1016/j.rser.2017.09.040.
[6] Abu-Khader, M. M. (2006). Recent progress in CO2 capture/sequestration: a review. Energy Sources, Part A, 28(14), 1261-1279. https://doi.org/10.1080/009083190933825.
[7] Zainab, G., Babar, A. A., Iqbal, N., Wang, X., Yu, J., & Ding, B. (2018). Amine-impregnated porous nanofiber membranes for CO2 capture. Composites Communications, 10, 45-51. https://doi.org/10.1016/j.coco.2018.06.005.
[8] Zainab, G., Iqbal, N., Babar, A. A., Huang, C., Wang, X., Yu, J., & Ding, B. (2017). Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO2 capture. Composites Communications, 6, 41-47. https://doi.org/10.1016/j.coco.2017.09.001.
[9] Wang, X., Ding, B., Yu, J., & Wang, M. (2011). Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano today, 6(5), 510-530. https://doi.org/10.1016/j.nantod.2011.08.004.
[10] Ramakrishna, S., Fujihara, K., Teo, W. E., Yong, T., Ma, Z., & Ramaseshan, R. (2006). Electrospun nanofibers: solving global issues. Materials today, 9(3), 40-50. https://doi.org/10.1016/S1369-7021(06)71389-X.
[11] Lee, Z. H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2012). Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. Renewable and Sustainable Energy Reviews, 16(5), 2599-2609. https://doi.org/10.1016/j.rser.2012.01.077.
[12] Li, H., Jakobsen, J. P., Wilhelmsen, Q, & Yan, J. (2011). PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models. Applied Energy, 88(11), 3567-3579. https://doi.org/10.1016/j.apenergy.2011.03.052.
[13] Ding, B., Wang, M., Wang, X., Yu, J., & Sun, G. (2010). Electrospun nanomaterials for ultrasensitive sensors. Materials today, 13(11), 16-27. https://doi.org/10.1016/S1369-7021(10)70200-5.
[14] Wang, X., Ding, B., Yu, J., & Wang, M. (2011). Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano today, 6(5), 510-530. https://doi.org/10.1016/j.nantod.2011.08.004.
[15] Rufford, T. E., Smart, S., Watson, G. C., Graham, B. F., Boxall, J., Da Costa, J. D., & May, E. F. (2012). The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94, 123-154. https://doi.org/10.1016/j.petrol.2012.06.016
[16] Brunetti, A., Scura, F., Barbieri, G., & Drioli, E. (2010). Membrane technologies for CO2 separation. Journal of Membrane Science, 359(1-2), 115-125. https://doi.org/10.1016/j.memsci.2009.11.040
[17] Zhou, K., Chaemchuen, S., & Verpoort, F. (2017). Alternative materials in technologies for Biogas upgrading via CO2 capture. Renewable and sustainable energy reviews, 79, 1414-1441. https://doi.org/10.1016/j.rser.2017.05.198.
[18] Song, C., Liu, Q., Ji, N., Deng, S., Zhao, J., Li, Y., & Kitamura, Y. (2017). Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy, 124, 29-39. https://doi.org/10.1016/j.energy.2017.02.054.
[19] Crake, A., Christoforidis, K. C., Kafizas, A., Zafeiratos, S., & Petit, C. (2017). CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 210, 131-140. https://doi.org/10.1016/j.apcatb.2017.03.039.
[20] Signorile, M., Vitillo, J. G., D’Amore, M., Crocellà, V., Ricchiardi, G., & Bordiga, S. (2019). Characterization and Modeling of Reversible CO2 Capture from Wet Streams by a MgO/Zeolite Y Nanocomposite. The Journal of Physical Chemistry C, 123(28), 17214-17224. https://doi.org/10.1021/acs.jpcc.9b01399.
[21] Dai, Z., Deng, J., Yu, Q., Helberg, R. M., Janakiram, S., Ansaloni, L., & Deng, L. (2019). Fabrication and evaluation of bio-based nanocomposite TFC hollow fiber membranes for enhanced CO2 capture. ACS applied materials & interfaces, 11(11), 10874-10882. https://doi.org/10.1021/acsami.8b19651.
[22] Liu, Y., Hao, M., Chen, Z., Liu, L., Liu, Y., Yang, W., & Ramakrishna, S. (2020). A review on recent advances in application of electrospun nanofiber materials as biosensors. Current Opinion in Biomedical Engineering, 13, 174-189. https://doi.org/10.1016/j.cobme.2020.02.001.
[23] Sorensen, J. A., Smith, S. A., Dobroskok, A. A., Belobraydic, M. L., Peck, W. D., Kringstad, J. J., & Zeng, Z. W. (2009). Carbon dioxide storage potential of the Broom Creek Formation in North Dakota: a case study in site characterization for large-scale sequestration. https://doi.org/10.1306/13171244St593378.
[24] Armstrong, M., Shi, X., Shan, B., Lackner, K., & Mu, B. (2019). Rapid CO2 capture from ambient air by sorbent‐containing porous electrospun fibers made with the solvothermal polymer additive removal technique. AIChE Journal, 65(1), 214-220. https://doi.org/10.1002/aic.16418.
[25] Angelakoglou, K., Gaidajis, G., Lymperopoulos, K., & Botsaris, P. N. (2015). Carbon Footprint Analysis of Municipalities-Evidence from Greece. Journal of Engineering Science & Technology Review, 8(4).
[26] Li, B., Duan, Y., Luebke, D., & Morreale, B. (2013). Advances in CO2 capture technology: A patent review. Applied Energy, 102, 1439-1447. https://doi.org/10.1016/j.apenergy.2012.09.009.
[27] Bavarella, S., Hermassi, M., Brookes, A., Moore, A., Vale, P., Moon, I. S., & McAdam, E. J. (2020). Recovery and concentration of ammonia from return liquor to promote enhanced CO2 absorption and simultaneous ammonium bicarbonate crystallisation during biogas upgrading in a hollow fibre membrane contactor. Separation and Purification Technology, 241, 116631. https://doi.org/10.1016/j.seppur.2020.116631
[28] Ochedi, F. O., Yu, J., Yu, H., Liu, Y., & Hussain, A. (2020). Carbon dioxide capture using liquid absorption methods: a review. Environmental Chemistry Letters, 1-33. https://doi.org/10.1007/s10311-020-01093-8
[29] Norhasyima, R. S., & Mahlia, T. M. I. (2018). Advances in CO₂ utilization technology: a patent landscape review. Journal of CO2 Utilization, 26, 323-335. https://doi.org/10.1016/j.jcou.2018.05.022
[30] Afanasiev, S. V., Kravtsova, M. V., Shevchenko, Y. N., Guschina, T. P., & Sokov, S. A. (2018, November). Optimization of carbon dioxide compressing technology in the production of urea. In IOP Conference Series: Materials Science and Engineering (Vol. 450, No. 6, p. 062015). IOP Publishing.
[31] Chen, S., Xiang, W., Wang, D., & Xue, Z. (2012). Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture. Applied energy, 95, 285-294. https://doi.org/10.1016/j.apenergy.2012.02.056.
[32] Garshasbi, V., Jahangiri, M., & Anbia, M. (2017). Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays. Applied Surface Science, 393, 225-233. https://doi.org/10.1016/j.apsusc.2016.09.161.
[33] Quang, D. V., Dindi, A., & Abu-Zahra, M. R. (2017). One-step process using CO2 for the preparation of amino-functionalized mesoporous silica for CO2 capture application. ACS Sustainable Chemistry & Engineering, 5(4), 3170-3178. https://doi.org/10.1021/acssuschemeng.6b02961.
[34] Salehian, P., & Chung, T. S. (2017). Thermally treated ammonia functionalized graphene oxide/polyimide membranes for pervaporation dehydration of isopropanol. Journal of Membrane Science, 528, 231-242. https://doi.org/10.1016/j.memsci.2017.01.038.
[35] Zhang, M., Deng, L., Xiang, D., Cao, B., Hosseini, S. S., & Li, P. (2019). Approaches to suppress CO2-induced plasticization of polyimide membranes in gas separation applications. Processes, 7(1), 51. https://doi.org/10.3390/pr7010051.
[36] Xu, X., Wang, J., Dong, J., Li, H. B., Zhang, Q., & Zhao, X. (2020). Ionic polyimide membranes containing Tröger's base: Synthesis, microstructure and potential application in CO2 separation. Journal of Membrane Science, 602, 117967. https://doi.org/10.1016/j.memsci.2020.117967.
[37] Marcus, Y. (1998). The properties of solvents.
[38] Sreedhar, I., Nahar, T., Venugopal, A., & Srinivas, B. (2017). Carbon capture by absorption–Path covered and ahead. Renewable and sustainable energy reviews, 76, 1080-1107. https://doi.org/10.1016/j.rser.2017.03.109.
[39] Borhani, T. N., Oko, E., & Wang, M. (2019). Process modelling, validation and analysis of rotating packed bed stripper in the context of intensified CO2 capture with MEA. Journal of Industrial and Engineering Chemistry, 75, 285-295. https://doi.org/10.1016/j.jiec.2019.03.040.
[40] Karimi, M., Hillestad, M., & Svendsen, H. F. (2011). Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture. Chemical engineering research and design, 89(8), 1229-1236. https://doi.org/10.1016/j.cherd.2011.03.005.
[41] Field, R. P., & Brasington, R. (2011). Baseline flowsheet model for IGCC with carbon capture. Industrial & Engineering Chemistry Research, 50(19), 11306-11312. https://doi.org/10.1021/ie200288u.
[42] Gatti, M., Martelli, E., Maréchal, F., & Consonni, S. (2015, July). Multi-objective Optimization of a Selexol® Process for the Selective Removal of CO2 and H2S from Coal-derived Syngas. In 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS.
[43] Ahn, H. (2017). Process Simulation of a Dual‐stage Selexol Process for Pre‐ combustion Carbon Capture at an Integrated Gasification Combined Cycle Power Plant. Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration, 609-628. https://doi.org/10.1002/9781119106418.ch24.
[44] Smith, K., Lee, A., Mumford, K., Li, S., Thanumurthy, N., Temple, N., & Stevens, G. (2015). Pilot plant results for a precipitating potassium carbonate solvent absorption process promoted with glycine for enhanced CO2 capture. Fuel Processing Technology, 135, 60-65. https://doi.org/10.1016/j.fuproc.2014.10.013.
[45] Brennecke, J. F., & Gurkan, B. E. (2010). Ionic liquids for CO2 capture and emission reduction. The Journal of Physical Chemistry Letters, 1(24), 3459-3464. https://doi.org/10.1021/jz1014828.
[46] Lee, A., Mumford, K. A., Wu, Y., Nicholas, N., & Stevens, G. W. (2016). Understanding the vapour–liquid equilibrium of CO2 in mixed solutions of potassium carbonate and potassium glycinate. International Journal of Greenhouse Gas Control, 47, 303-309. https://doi.org/10.1016/j.ijggc.2016.02.005.
[47] Saleh, M., Chandra, V., Kemp, K. C., & Kim, K. S. (2013). Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption. Nanotechnology, 24(25), 255702. https://doi.org/10.1088/0957-4484/24/25/255702.
[48] Loganathan, S., Tikmani, M., & Ghoshal, A. K. (2013). Novel pore-expanded MCM-41 for CO2 capture: synthesis and characterization. Langmuir, 29(10), 3491-3499. https://doi.org/10.1021/la400109j.
[49] Russo, G., Prpich, G., Anthony, E. J., Montagnaro, F., Jurado, N., Di Lorenzo, G., & Darabkhani, H. G. (2018). Selective-exhaust gas recirculation for CO2 capture using membrane technology. Journal of Membrane Science, 549, 649-659. https://doi.org/10.1016/j.memsci.2017.10.052.
[50] Ghasem, N., & Al-Marzouqi, M. (2017). Modeling and experimental study of carbon dioxide absorption in a flat sheet membrane contactor. Journal of Membrane Science and Research, 3(2), 57-63.
[51] Moraes, L., da Rosa, G. M., Santos, L. O., & Costa, J. A. (2020). Innovative development of membrane sparger for carbon dioxide supply in microalgae cultures. Biotechnology progress, 36(4), e2987. https://doi.org/10.1002/btpr.2987
[52] Samimi, A., Zarinabadi, S., Bozorgian, A., Amosoltani, A., Tarkesh Esfahani, M. S., & Kavousi, K. (2020). Advances of membrane technology in acid gas removal in industries. Progress in Chemical and Biochemical Research, 46-54. https://doi.org/10.33945/SAMI/PCBR.2020.1.6
[53] Nasir, R., & Abdulrahman, A. (2020). Polymeric amine membrane materials for carbon dioxide (CO2)/methane (CH4) separation. Materialwissenschaft und Werkstofftechnik, 51(1), 66-72. https://doi.org/10.1002/mawe.201900084.
[54] Han, K. K., Ma, L., Zhao, H. M., Li, X., Chun, Y., & Zhu, J. H. (2012). In situ synthesis of SBA-3/cotton fiber composite materials: a hybrid device for CO2 capture. Microporous and Mesoporous Materials, 151, 157-162. https://doi.org/10.1016/j.micromeso.2011.10.043.
[55] Moya, C., Gonzalez-Miquel, M., Rodriguez, F., Soto, A., Rodriguez, H., & Palomar, J. (2017). Non-ideal behavior of ionic liquid mixtures to enhance CO2 capture. Fluid Phase Equilibria, 450, 175-183. https://doi.org/10.1016/j.fluid.2017.07.014.
[56] Li, Y., Cheng, J., Hu, L., Liu, J., Zhou, J., & Cen, K. (2018). Graphene nanoplatelet and reduced graphene oxide functionalized by ionic liquid for CO2 capture. Energy & Fuels, 32(6), 6918-6925. https://doi.org/10.1021/acs.energyfuels.8b00889.
[57] Abe, H., Takeshita, A., Sudo, H., & Akiyama, K. (2020). CO2 capture and surface structures of ionic liquid-propanol solutions. Journal of Molecular Liquids, 301, 112445. https://doi.org/10.1016/j.molliq.2020.112445.
[58] Lian, X., Xu, L., Chen, M., Wu, C. E., Li, W., Huang, B., & Cui, Y. (2019). Carbon dioxide captured by metal organic frameworks and its subsequent resource utilization strategy: a review and prospect. Journal of nanoscience and nanotechnology, 19(6), 3059-3078. https://doi.org/10.1166/jnn.2019.16647.
[59] Wongsakulphasatch, S., Kiatkittipong, W., Saupsor, J., Chaiwiseshphol, J., Piroonlerkgul, P., Parasuk, V., & Assabumrungrat, S. (2017). Effect of Fe open metal site in metal‐organic frameworks on post‐combustion CO2 capture performance. Greenhouse Gases: Science and Technology, 7(2), 383-394. https://doi.org/10.1002/ghg.1662.
[60] Chung, Y. G., Gómez-Gualdrón, D. A., Li, P., Leperi, K. T., Deria, P., Zhang, H., & Snurr, R. Q. (2016). In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Science advances, 2(10), e1600909. https://doi.org/10.1126/sciadv.1600909.
[61] Yoo, B. M., Shin, J. E., Lee, H. D., & Park, H. B. (2017). Graphene and graphene oxide membranes for gas separation applications. Current opinion in chemical engineering, 16, 39-47. https://doi.org/10.1016/j.coche.2017.04.004.
[62] Chernikova, V., Shekhah, O., Belmabkhout, Y., & Eddaoudi, M. (2020). Nanoporous Fluorinated Metal–Organic Framework-Based Membranes for CO2 Capture. ACS Applied Nano Materials, 3(7), 6432-6439. https://doi.org/10.1021/acsanm.0c00909.
[63] Setiawan, W. K., & Chiang, K. Y. (2019). Silica applied as mixed matrix membrane inorganic filler for gas separation: a review. Sustainable Environment Research, 29(1), 1-21. https://doi.org/10.1186/s42834-019-0028-1.
[64] Borandeh, S., Abdolmaleki, A., Zamani Nekuabadi, S., & Sadeghi, M. (2019). Methoxy poly (ethylene glycol) methacrylate-TiO2/poly (methyl methacrylate) nanocomposite: an efficient membrane for gas separation. Polymer-Plastics Technology and Materials, 58(7), 789-802. https://doi.org/10.1080/03602559.2018.1520255.
[65] Gao, W., Liang, S., Wang, R., Jiang, Q., Zhang, Y., Zheng, Q., & Park, S. E. (2020). Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews. https://doi.org/10.1039/D0CS00025F.
[66] Ma, B., Lin, R., He, H., Wu, Q., & Chen, S. (2020). Rapid synthesis of solid amine composites based on short mesochannel SBA-15 for CO2 capture. Composites Part B: Engineering, 185, 107782. https://doi.org/10.1016/j.compositesb.2020.107782.
[67] Ünveren, E. E., Monkul, B. Ö., Sarıoğlan, Ş., Karademir, N., & Alper, E. (2017). Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum, 3(1), 37-50. https://doi.org/10.1016/j.petlm.2016.11.001.
[68] Liu, F., Kuang, Y., Wang, S., Chen, S., & Fu, W. (2018). Preparation and characterization of molecularly imprinted solid amine adsorbent for CO2 adsorption. New Journal of Chemistry, 42(12), 10016-10023. https://doi.org/10.1039/C8NJ00686E.
[69] Rojek, T., Gubler, L., Nasef, M. M., & Abouzari-Lotf, E. (2017). Polyvinylamine-containing adsorbent by radiation-induced grafting of N-vinylformamide onto ultrahigh molecular weight polyethylene films and hydrolysis for CO2 capture. Industrial & Engineering Chemistry Research, 56(20), 5925-5934. https://doi.org/10.1021/acs.iecr.7b00862.
[70] Shao, L., Li, Y., Huang, J., & Liu, Y. N. (2018). Synthesis of triazine-based porous organic polymers derived N-enriched porous carbons for CO2 capture. Industrial & Engineering Chemistry Research, 57(8), 2856-2865. https://doi.org/10.1021/acs.iecr.7b04533.
[71] Sevilla, M., Parra, J. B., & Fuertes, A. B. (2013). Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. ACS applied materials & interfaces, 5(13), 6360-6368. https://doi.org/10.1021/am401423b.
[72] Chen, J., Yang, J., Hu, G., Hu, X., Li, Z., Shen, S., & Fan, M. (2016). Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustainable Chemistry & Engineering, 4(3), 1439-1445. https://doi.org/10.1021/acssuschemeng.5b01425
[73] Olivieri, L., Roso, M., De Angelis, M. G., & Lorenzetti, A. (2018). Evaluation of electrospun nanofibrous mats as materials for CO2 capture: A feasibility study on functionalized poly (acrylonitrile)(PAN). Journal of Membrane
Science, 546, 128-138. https://doi.org/10.1016/j.memsci.2017.10.019.
[74]Babitha, S., Rachita, L., Karthikeyan, K., Shoba, E., Janani, I., Poornima, B., & Sai, K. P. (2017). Electrospun protein nanofibers in healthcare: A review. International journal of pharmaceutics, 523(1), 52-90. https://doi.org/10.1016/j.ijpharm.2017.03.013.
[75] Reneker, D. H., & Mazur, J. (1990). Crystallographic defects in
polymers and what they do Computer Simulation of
Polymers ed J Roe (Englewoods Cliffs, NJ:
Prentice-Hall) ch 23, 332–340.
[76] Liu, X., Yang, Y., Yu, D. G., Zhu, M. J., Zhao, M., & Williams, G. R. (2019). Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chemical Engineering Journal, 356, 886-894. https://doi.org/10.1016/j.cej.2018.09.096.
[77] Zainab, G., Babar, A. A., Iqbal, N., Wang, X., Yu, J., & Ding, B. (2018). Amine-impregnated porous nanofiber membranes for CO2 capture. Composites Communications, 10, 45-51. https://doi.org/10.1016/j.coco.2018.06.005.
[78] Haider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165-1188. https://doi.org/10.1016/j.arabjc.2015.11.015.
[79] Sandri, G., Rossi, S., Bonferoni, M. C., Caramella, C., & Ferrari, F. (2020). Electrospinning technologies in wound dressing applications. Therapeutic dressings and wound healing applications, 315-336. https://doi.org/10.1002/9781119433316.ch14.
[80] Feng, J. J. (2002). The stretching of an electrified non-Newtonian jet: A model for electrospinning. Physics of fluids, 14(11), 3912-3926. https://doi.org/10.1063/1.1510664
[81] Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q., & Wang, Q. (2015). Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials, 8(5), 2718-2734. https://doi.org/10.3390/ma8052718
[82] Cui, W., Li, X., Zhou, S., & Weng, J. (2007). Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of applied polymer science, 103(5), 3105-3112. https://doi.org/10.1002/app.25464.
[83] Kanu, N. J., Gupta, E., Vates, U. K., & Singh, G. K. (2020). Electrospinning process parameters optimization for biofunctional curcumin/gelatin nanofibers. Materials Research Express, 7(3), 035022.
[84] Sneddon, G., Greenaway, A., & Yiu, H. H. (2014). The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Advanced Energy Materials, 4(10), 1301873. https://doi.org/10.1002/aenm.201301873.
[85]Chaúque, E. F., Dlamini, L. N., Adelodun, A. A., Greyling, C. J., & Ngila, J. C. (2017). Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes. Physics and Chemistry of the Earth, Parts A/B/C, 100, 201-211. https://doi.org/10.1016/j.pce.2016.10.008
[86] Damberga, D., Viter, R., Fedorenko, V., Iatsunskyi, I., Coy, E., Graniel, O., & Bechelany, M. (2020). Photoluminescence study of defects in ZnO-coated polyacrylonitrile nanofibers. The Journal of Physical Chemistry C, 124(17), 9434-9441. https://doi.org/10.1021/acs.jpcc.0c00326.
[87] Ali, N., Babar, A. A., Zhang, Y., Iqbal, N., Wang, X., Yu, J., & Ding, B. (2020). Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture. Journal of colloid and interface science, 560, 379-387. https://doi.org/10.1016/j.jcis.2019.10.034.
[88] Chiang, Y. C., Lee, S. T., Leo, Y. J., & Tseng, T. L. (2020). Importance of Pore Structure and Surface Chemistry in Carbon Dioxide Adsorption on Electrospun Carbon Nanofibers. Sensors and Materials, 32(7), 2277-2288. https://doi.org/10.18494/SAM.2020.2871
[89] Chen, F., Wu, Y., Ding, Z., Xia, X., Li, S., Zheng, H., & Zi, Y. (2019). A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano energy, 56, 241-251. https://doi.org/10.1016/j.nanoen.2018.11.041
[90] Hong, S. M., Kim, S. H., Jeong, B. G., Jo, S. M., & Lee, K. B. (2014). Development of porous carbon nanofibers from electrospun polyvinylidene fluoride for CO2 capture. RSC advances, 4(103), 58956-58963. https://doi.org/10.1039/C4RA11290C.
[91] Heo, Y. J., Zhang, Y., Rhee, K. Y., & Park, S. J. (2019). Synthesis of PAN/PVDF nanofiber composites-based carbon adsorbents for CO2 capture. Composites Part B: Engineering, 156, 95-99. https://doi.org/10.1016/j.compositesb.2018.08.057.
[92] Zhang, Y., Guan, J., Wang, X., Yu, J., & Ding, B. (2017). Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture. ACS applied materials & interfaces, 9(46), 41087-41098. https://doi.org/10.1021/acsami.7b14635.
[93] Zainab, G. , Babar, A.A. , Iqbal, N., &Wang X., (2018). Amine-impregnated porous nanofiber membranes for CO2 capture, Composites Communications 10:45-51.
[94] Vajtai, R. (Ed.). (2013). Springer handbook of nanomaterials. Springer Science & Business Media.
[95] Iqbal, N., Wang, X., Babar, A. A., Yu, J., & Ding, B. (2016). Highly flexible NiCo2O4/CNTs doped carbon nanofibers for CO2 adsorption and supercapacitor electrodes. Journal of colloid and interface science, 476, 87-93. https://doi.org/10.1016/j.jcis.2016.05.010.