غشاهای کامپوزیتی مبتنی بر گرافن برای نانوصافش: عملکرد و چشماندازهای آینده
محورهای موضوعی : پليمرها و نانوفناوری
1 - دانشگاه بیرجند
کلید واژه: غشا, نانوصافش, تصفیه, گرافن,
چکیده مقاله :
نانو صافش (Nanofiltration) یکی از پرکاربردترین فرایندهای غشایی برای تصفیه آب بوده که ارزش عملی بالایی دارد؛ زیرا تعداد زیادی گونههای شیمیایی از طریق این فرایند جدا میشوند. معمولاً برای نانوصافش، عملیات پرمصرف انرژی شامل ایجاد فشار کافی برای دفع پرش ها و مواد شیمیایی با وزن مولکولی پایین در سطح غشا، درگیر هستند. تحولات اخیر در سنتز غشاهای نانوکامپوزیت با گرافن و مشتقات گرافن منجر به افزایش نیاز انرژی و افزایش عملکرد غشاها شده است. در تحقیق حاضر، پیشرفتهای اخیر در زمینه غشاهای کامپوزیتی مبتنی بر گرافن برای نانوصافش با کاربردهایی برای هر دو نوع حلال مبتنی بر محلولهای آبی و حلالهای آلی ارائه شده است. این تحقیق بهویژه بر عملکرد غشاها و کاربردهای این مواد برای دفع نمک ها (Na+، Mg2+)، فلزات سنگین (Li2+) و ترکیبات آلی با وزن مولکولی پایین (رنگ های متیلن آبی، قرمز کنگو، مستقیم قرمز، متیل، نارنجی، سبز واکنشی 13 و غیره) متمرکز خواهد بود. روش های سنتز مدرن مانند پلیمرشدن سطحی (Interfacial Polymerization) برای بهدست آوردن غشاهای نانوصافش کامپوزیتی لایه نازک نیز ارائه شده است.
Nanofiltration is one of the most widely used membrane processes for water purification with high practical value because of a large number of chemical species that are separated through this process. Usually, for nanofiltration, high energy–con- suming operations are involved including the generation of enough pressure for the rejection of jumps and lower molecular weight chemicals at the surface of the membrane. Recent developments in the synthesis of nanocomposite membranes with graphene and graphene derivatives have led to an increase in energy requirements and the increase in membranes perfor- mances. In the present review, we have presented the recent advances in the field of graphene-based composite membranes for nanofiltration with applications for both types of based solvents—aqueous solutions and organic solvents. The presentation will be focused especially on the performances of membranes and applications of these materials for the rejection of salts (Na+, Mg2+), heavy metals (Li2+), and lower molecular weight organic compounds (methylene blue, Congo red, Direct Red, Methyl orange, Reactive green 13, etc.). Modern synthesis methods like interfacial polymerization for obtaining thin-film composite nanofiltration membranes are also presented. Nanofiltration is one of the most widely used membrane processes for water purification with high practical value because of a large number of chemical species that are separated through this process.
1. Ulbricht M., Advanced Functional Polymer Membranes, Polymer, 47, 2217–2262, 2006.
2. Lehn J.M., Supramolecular Chemistry: Concepts and Perspectives. Wiley ISBN 3–527- 2931, 1–6, 1995.
3. Kang X., Cheng Y., Wen Y., Qi J., Li X., Bioinspired Codeposited Preparation of GO Composite Loose Nanofiltration Membrane for Dye Contaminated Wastewater Sustainable Treatment, Journal of Hazardous Materials, 400, 123121, 2020.
4. Palla-Papavlu A., Voicu S.I., Dinescu M., Sensitive Materials and Coating Technologies for Surface Acoustic Wave Sensors, Chemosensors, 9, 105, 2021.
5. Chiulan I., Heggset E.B., Voicu S.I., Chinga-Carrasco G., Photopolymerization of Biobased Polymers in A Biomedical Engineer- Ing Perspective, Biomacromolecules, 225, 1795–1814, 2021. 6. Muhulet A., Tuncel C., Miculescu F., Pandele A.M., Bobirica C., Orbeci C., Bobirica L., Palla-Papavlu A., Voicu S.I., Synthesis and Characterization of Polysulfone-Tio2 Doped MWCNT Composite Membranes by Sonochemical Method, Applied Physics A, 126, 233, 2020.
7. Pandele A.M., Constantinescu A., Radu I.C., Miculescu F., Voicu S.I., Ciocan L.T., Synthesis and Characterization Of PLA– Microstructured Hydroxyapatite Composite Films, Materials, 13, 274, 2020.
8. Oprea M., Voicu S.I., Recent Advances in Composites Based On Cellulose Derivatives for Biomedical Applications, Carbohydrate Polymers, 247, 116683, 2020.
9. Oprea M., Voicu S.I., Cellulose Composites with Graphene for Tissue Engineering Applications. Materials, 1323, 5347, 2020.
10. Oprea M., Voicu S.I., Recent Advances in Applications of Cellulose Derivatives-Based Composite Membranes with Hydroxyapatite, Materials, 13, 2481, 2020.
11. Pandele A.M., Iovu H., Orbeci C., Tuncel C., Nicolescu A., Deleanu C., Miculescu F., Voicu S.I., Surface Modified Cellulose Acetate Membranes for the Reactive Retention of Tetracycline, Separation and Purification Technology, 249, 117145, 2020.
12. Raicopol M.D., Andronescu C., Voicu S.I., Vasile E., Pandele A.M., Cellulose Acetate/Layered Double Hydroxide Adsorptive Membranes for Efficient Removal of Pharmaceutical Environmental Contaminants, Carbohydrate Polymers, 214, 204–212, 2019.
13. Voicu S.I., Thakur V.K., Aminopropyltriethoxysilane as A Linker for Cellulose-Based Functional Materials: New Horizons and Future Challenges, Current Opinion in Green and Sustainable Chemistry, 30, 100480, 2021.
14. Ionita M., Crica L.E., Voicu S.I., Pandele A.M., Iovu H., Fabrication of Cellulose Triacetate/Graphene Oxide Porous Membrane, Polymers for Advanced Technologies, 27, 350–357, 2016.
15. Voicu S.I., Pandele A.M., Vasile E., Rughinis R., Crica L.E., Pilan L., Ionita M., The Impact of Sonication Time Through Poly-Sulfonegraphene Oxide Composite Films Properties, Digest Journal of Nanomaterials and Biostructures, 8, 1389–1394, 2013.
16. Pandele A.M., Serbanescu O.S., Voicu S.I., Polysulfone Composite Membranes with Carbonaceous Structure, Synthesis and applications coatings, 107, 609, 2020.
17. Satulu V., Mitu B., Pandele A.M., Voicu S.I., Kravets L., Dinescu G., Composite Polyethylene Terephthalate Track Membranes with Thin Teflon-like Layers: Preparation and Surface Properties, Applied Surface Science, 476, 452–459, 2019.
18. Serbanescu O.S., Voicu S.I., Thakur V.K., Polysulfone Functionalized Membranes: Properties and Challenges, Materials Today Chemistry, 17, 100302, 2020.
19. Serbanescu O.S., Pandele A.M., Miculescu F., Voicu S.I., Synthesis and Characterization of Cellulose Acetate Membranes with Self-Indicating Properties by Changing the Membrane Surface Color for Separation of Gd (III), Coatings, 10, 468, 2020.
20. Voicu S.I., Dobrica A., Sava S., Ivan A., Naftanaila L., Cationic Surfactants-Controlled Geometry and Dimensions of Polymeric Membrane Pores, The Journal of Optoelectronics and Advanced Materials, 14, 923–928, 2012.
21. Zhou M., Chen J., Zhou W., Sun J., Tang H., Developing Composite Nanofiltration Membranes with Highly Stable Antifouling Property Based on Hydrophilic Roughness, Separation and Purification Technology, 256, 117799, 2021.
22. Zhang Y., Chung T.-S., Graphene Oxide Membranes for Nanofiltration, Current Opinion in Chemical Engineering, 16, 9–15, 2017.
23. Kang X., Liu X., Liu J., Wen Y., Qi J., Li X., Spin Assisted Interfacial Polymerization Strategy for Graphene Oxide-Polyamide Composite Nanofiltration Membrane with High Performance, Applied Surface Science, 508, 145198, 2020.
24. Hu R.R., He Y.J., Huang M.R., Zhao G.K., Zhu H.W., Strong Adhesion of Graphene Oxide Coating on Polymer Separation Membranes, Langmuir, 34, 10569–10579, 2018.
25. Xie Q.L., Zhang S.S., Hong Z., Ma H.J., Zeng B.R., Gong X., Shao W.Y., Wang Q.Q., A Novel Double-Modified Strategy to Enhance the Performance of Thin-Film Nanocomposite Nanofiltration Membranes: Incorporating Functionalized Graphene into Supporting and Selective Layers, Chemical Engineering Journal, 368, 186–201, 2019.
26. Zheng S.X., Tu Q.S., Urban J.J., Li S.F., Mi B.X., Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms, ACS Nano, 11, 6440–6450, 2017.
27. Liu M.-L., Wang J., Guo J.-L., Lu T.-D., Cao X.-L., Sun S.-P., Graphene Oxide/Cross-Linked Polyimide (GO/CLPI) Composite Membranes for Organic Solvent Nanofiltration, Chemical Engineering Research and Design, 146, 182–189, 2019.
28. Kunimatsu M., Nakagawa K., Yoshioka T., Shintani T., Yasui T., Kamio E., Edman Tsang S.C., Li J., Matsuyama H., Design of Niobate Nanosheet-Graphene Oxide Composite Nanofiltration Mem- Branes with Improved Permeability, Chemical Engineering Research and Design, 595, 117598, 2020.
29. Chen L., Moon J.-H., Ma X., Zhang L., Chen Q., Chen L., Peng R., Si P., Feng J., Li Y., Lou J., Ci L., High Performance Graphene Oxide Nanofiltration Membrane Prepared by Electrospraying for Wastewater Purification, Carbon, 130, 487–494, 2018.
30. Wang Y.-C., Kumar S.R., Shih C.-M., Hung W.-S., An Q.-F., Hsu H.-C., Huang S.-H., Lue S.J., High Permeance Nanofiltration Thin Film Composites with a Polyelectrolyte Complex Top Layer Containing Graphene Oxide Nanosheets, Journal of Membrane Science, 540, 391–400, 2017.
31. Li S., Li C., Su B., Hu M.Z., Gao X., Gao C., Amino-Functionalized Graphene Quantum Dots (Agqds)-Embedded Thin Film Nanocomposites for Solvent Resistant Nanofiltration (SRNF) Membranes Based on Covalence Interactions, Journal of Membrane Science, 588, 117212, 2019.
32. Xu P., Hong J., Qian X., Xu Z., Xia H., Ni Q.Q., “Bridge” Graphene Oxide Modified Positive Charged Nanofiltration Thin Membrane with High Efficiency for Mg2+/Li+ Separation, Desalination, 488, 114522, 2020.
33. Sun S.-Y., Cai L.-J., Nie X.-Y., Song X., Yu J.-G., Separation of Magnesium and Lithium from Brine Using a Desal Nanofiltration Membrane, Journal of Water Process Engineering, 7, 210–217, 2015.
34. Yang G., Shi H., Liu W., Xingn W., Xu A., Investigation of Mg2+/Li+ Separation by Nanofiltration, Chinese Journal of Chemical Engineering, 19, 586–591, 2011.
35. Zhang M., Sun J., Mao Y., Liu G., Jin W., Effect of Substrate on Formation and Nanofiltration Performance of Graphene Oxide Membranes, Journal of Membrane Science, 574, 196–204, 2019.
36. Nam Y.T., Kim S.J., Kang K.M., Jung W.-B., Kim D.W., Jung H.-T., Enhanced Nanofiltration Performance of Graphene-Based Membranes on Wrinkled Polymer Supports, Carbon, 148, 370–377, 2019.
37. Lin Y., Shen Q., Kawabata Y., Segawa J., Cao X., Guan K., Istirokhatun T., Yoshioka T., Matsuyama H., Graphene Quantum Dots (Gqds)-Assembled Membranes with Intrinsic Functionalized Nanochannels for High-Performance Nanofiltration, Chemical Engineering Journal, 127602, 2020.
38. Xue J., Shen J., Zhang R., Wang F., Liang S., You X., Yu Q., Hao Y., Su Y., Jiang Z., High-Flux Nanofiltration Membranes Prepared With Β-Cyclodextrin and Graphene Quantum Dots, Journal of Membrane Science, 612, 118465, 2020.
39. Liang Y., Li C., Li S., Su B., Hu M.Z., Gao X., Gao C., Graphene Quantum Dots (Gqds)-Polyethyleneimine as Interlayer for The Fabrication of High-Performance Organic Solvent Nanofiltration (OSN) Membranes, Chemical Engineering Journal, 380, 122462, 2020.
40. Bi R., Zhang R., Shen J., Liu Y., He M., You X., Su Y., Jiang Z., Graphene Quantum Dots Engineered Nanofiltration Membrane for Ultrafast Molecular Separation, Journal of Membrane Science, 572, 504–511, 2019.
41. Kandjou V., Gonzalez Z., Acevedo B., Munuera J.M., Paredes J.I., Melendi-Espina S., Influence of Graphene Oxide’s Characteristics on the Fabrication and Performance of Crosslinked Nanofiltration Membranes, Journal of the Taiwan Institute of Chemical Engineers, 119, 158–165, 2021.
42. Feng J., Zhu J., Wei L., Li J., Yan W., Effect of Hydroxyl Group of Carboxylic Acids on the Adsorption of Acid Red G and Methylene Blue on TiO2, Chemical Engineering Journal, 269, 316–322, 2015.
43. Nie L., Goh K., Wang Y., Lee J., Huang Y., Enis Karahan H.E., Zhou K., Guiver M.D., Bae T.H., Realizing Small-Flake Graphene Oxide Membranes for Ultrafast Size-Dependent Organic Solvent Nanofiltration, Science Advances, 6, 1–13, 2020.
44. Mohammed S., Hegab H.M., Ou R., Liu S., Ma H., Chen X., Sridhar T., Wang H., Effect of Oxygen Plasma Treatment on the Nanofiltration Performance of Reduced Graphene Oxide/Cellulose Nanofiber Composite Membranes, Green Chemical Engineering, 2, 122–131, 2021.
45. Ambre J.P., Dhopte K.B., Nemade R.P., Vishwanath D.H., High Flux Hyperbranched Starch–Graphene Oxide Piperazinamide Composite Nanofiltration Membrane, Journal of Environmental Chemical Engineering, 7, 103300, 2019.
46. Chen L., Wang W., Fang Q., Zuo K., Hou G., Ai Q., Li Q., Ci L., Lou J., High Performance Hierarchically Nanostructured Graphene Oxide/Covalent Organic Framework Hybrid Membranes for Stable Organic Solvent Nanofiltration, Applied Materials Today, 20, 100791, 2020.
47. Chen L., Li Y., Chen L., Li N., Dong C., Chen Q., Liu B., Ai Q., Si P., Feng J., Zhang L., Suhr J., Lou J., Ci L., A Large-Area Free Standing Graphene Oxide Multilayer Membrane with High Stability for Nanofiltration Applications, Chemical Engineering Journal, 345, 536–544, 2018.
48. Zhao B., Guo Z., Wang H., Wang L., Qian Y., Long X., Ma C., Zhang Z., Li J., Zhang H., Enhanced Water Permeance of a Poly-amide Thin-film Composite Nanofiltration Membrane with a Metal-Organic Framework Interlayer, Journal of Membrane Science, 625, 119154, 2021.
49. Mehrabi N., Lin H., Aich N., Deep Eutectic Solvent Functional- Ized Graphene Oxide Nanofiltration Membranes with Superior Water Permeance and Dye Desalination Performance, Chemical Engineering Journal, 412, 128577, 2021.
50. Song Y., Sun Y., Chen M., Huang P., Li T., Zhang X., Jiang K., Efficient Removal and Fouling-Resistant of Anionic Dyes by Nanofiltration Membrane with Phosphorylated Chitosan Modified Graphene Oxide Nanosheets Incorporated Selective Layer, Journal of Water Process Engineering, 34, 101086, 2020.
51. Liu Y., Yu Z., Peng Y., Shao L., Li X., Zeng H., A Novel Photocatalytic Self-Cleaning Tio2 Nanorods Inserted Graphene Oxide Based Nanofiltration Membrane, Chemical Physics Letters, 749, 137424, 2020.
52. Abadikhah H., Kalali E.N., Behzadi S., Khan S.A., Xu X., Shabestari M.E., Agathopoulos S., High Flux Thin Film Nanocomposite Membrane Incorporated with Functionalized Tio2@Reduced Graphene Oxide Nanohybrids for Organic Solvent Nanofiltration, Chemical Engineering Science, 204, 99–109, 2019.
53. Wang J., Wang Y., Zhu J., Zhang Y., Liu J., Van der Bruggen B., Construction of TiO2@Graphene Oxide Incorporated Antifouling Nanofiltration, Membrane Science, 533, 279–288, 2017.
54. Safarpour M., Vatanpour V., Khataee A., Esmaeili M., Development of A Novel High Flux and Fouling-Resistant Thin Film Composite Nanofiltration Membrane by Embedding Reduced Graphene Oxide/TiO2, Separation and Purification Technology, 154, 96–107, 2015.
55. Kunimatsu M., Nakagawa K., Yoshioka T., Shintani T., Yasui T., Kamio E., Edman Tsang S.C., Li J., Matsuy H., Design of Niobate Nanosheet-Graphene Oxide Composite Nanofiltration Membranes with Improved Permeability, Journal of Membrane Science, 595, 117598, 2020.
56. Qin Y., Liu H., Liu Y., Chen M., Chen K., Huang Y., Xiao C., Design of a Novel Interfacial Enhanced GO-PA/APVC Nanofiltration Membrane with Stripe-Like Structure, Journal of Membrane Science, 604, 118064, 2020.
57. Amiri S., Asghari A., Vatanpour V., Ra M., Fabrication and Characterization of A Novel Polyvinyl Alcohol-Graphene Oxide-Sodium Alginate Nanocomposite Hydrogel Blended PES Nanofiltration Membrane for Improved Water Purification, Separation and Purification Technology, 250, 117216, 2020.
58. Hou J., Chen Y., Shi W., Bao C., Hu X., Graphene Oxide/Methylene Blue Composite Membrane for Dyes Separation: Formation Mechanism and Separation Performance, Applied Surface Science, 505, 144145, 2020.
59. Shao W., Liu C., Ma H., Hong Z., Xie Q., Lu Y., Fabrication of Ph-Sensitive Thin-Film Nanocomposite Nanofiltration Membranes with Enhanced Performance by Incorporating Amine Functionalized Graphene Oxide, Applied Surface Science, 487, 1209–1221, 2019.
60. Gao T., Huang L., Li C., Xu G., Shi G., Graphene Membranes with Tuneable Nanochannels by Intercalating Self-Assembled Porphyrin Molecules for Organic Solvent Nanofiltration, Carbon, 124, 263–270, 2017.
61. Kang D., Shao H., Chen G., Dong X., Qin S., Fabrication of Highly Permeable PVDF Loose Nanofiltration Composite Membranes for the Effective Separation of Dye/Salt Mixtures, Journal of Membrane Science, 621, 118951, 2021.
62. Tian L., Jiang Y., Li S., Han L., Su B., Graphene Oxide Interlayered Thin-Film Nanocomposite Hollow Fiber Nanofiltration Membranes with Enhanced Aqueous Electrolyte Separation Performance, Separation and Purification Technology, 248, 117153, 2020.
63. Zhong Y., Mahmud S., He Z., Yang Y., Zhang Z., Guo F., Chen Z., Xiong Z., Zhao Y., Graphene Oxide Modified Membrane for Highly Efficient Wastewater Treatment by Dynamic Combination of Nanofiltration and Catalysis, Journal of Hazardous Materials, 397, 122774, 2020.
64. Hu R., Zhang R., He Y., Zhao G., Zhu H., Graphene Oxide in Polymer Nanofiltration Membranes with Enhanced Permeability by Interfacial Polymerization, Journal of Membrane Science, 564, 813–819, 2018.
65. Anand A., Unnikrishnan B., Mao J.-Y., Lin H.-J., Huang C.-C., Graphene-Based Nanofiltration Membranes for Improving Salt Rejection, Water Flux and Antifouling—A Review, Desalination, 429, 119–133, 2018.
66. Geim A.K., Graphene: Status and Prospects, Science, 324, 1530–1535, 2009.
67. Berry V., Impermeability of Graphene and Its Applications, Carbon, 62, 1–10, 2013.
68. Nicolaı A., Sumpter B.G., Meunier V., Tunable Water Desalination Across Graphene Oxide Framework Membranes, Physical Chemistry Chemical Physics, 16, 8646–8654, 2014.
69. Lawler J., Incorporation of Graphene-Related Carbon Nanosheets in Membrane Fabrication for Water Treatment: A Review, Membranes, 6, 57, 2016.
70. Vazqueza H., Ahlgrena E.H., Ochedowski O., Leino A.A., Mirzayev R., Kozubek R., Lebius H., Karlusic M., Jaksic M., Krasheninnikov A.V., Kotakoski J., Schleberger M., Nordluna K., Djurabekova F., Creating Nanoporous Graphene with Swift Heavy Ions, Carbon, 114, 511–518, 2017.
71. Fischbein M.D., Drndic M., Electron Beam Nanosculpting of Suspended Graphene Sheets, Applied Physics Letters, 93, 113107, 2008.
72. Yu C., Zhang B., Yana F., Zhao J., Li J., Li L., Li J., Engineering Nanoporous Graphene Oxide by Hydroxyl Radicals, Carbon, 105, 291–296, 2016.
73. Fox D.S., Maguire P., Zhou Y., Rodenburg C., O’Neill A., Coleman J.N., Zhang H., Sub-5nm Graphene Nanopore Fabrication by Nitrogen Ion Etching Induced by a Low Energy Electron Beam, Nanotechnology, 27, 195302, 2016.
74. O’Hern S.C., Boutilier M.S.H., Idrobo J.-C., Song Y., Kong J., Laoui T., Atieh M., Karnik R., Selective Ionic Transport Through Tunable Subnanometer Pores in Single Layer Graphene Membranes, Nano Letters, 14, 1234–1241, 2014.
75. An D., Yang L., Wang T.-J., Liu B., Separation Performance of Graphene Oxide Membrane in Aqueous Solution, Industrial & Engineering Chemistry Research, 55, 4803–4810, 2016.
76. Zhang Y., Zhang S., Chung T.-S., Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal Via Nanofiltration, Environmental Science & Technology, 49, 10235–10242, 2015.
77. Sitko R., Musielak M., Zawisza B., Talik E., Gagor A., Graphene Oxide/Cellulose Membranes in Adsorption of Divalent Metal Ions, RSC Advances, 6, 96595–96605, 2016.
78. Ashour R.M., Abdelhamid H.N., Abdel-Magied A.F., Abdel-Khalek A.A., Ali M.M., Uheida A., Muhammed M., Zou X., Dutta J., Rare Earth Ions Adsorption onto Graphene Oxide Nanosheets, Solvent Extraction and Ion Exchange, 35, 91–103, 2017.
79. Romanchuk A.Y., Slesarev A.S., Kalmykov S.N., Kosynkin D.V., Tour J.M., Graphene Oxide for Effective Radionuclide Removal, Physical Chemistry Chemical Physics, 15, 2321–2327, 2013.
80. Ates B., Koytepe S., Ulu A., Gurses C., Thakur Chemistry V.K., Structures, and Advanced Applications of Nanocomposites From Biorenewable Resources, Chemical Reviews, 120, 9304–9362, 2020.
81. Kumar R., Raizada P., Verma N., Hosseini-Bandegharaei A., Thakur V.K., Le Q.V., Nguyen V.-H., Selvasembian R., Singh P., Recent Advances on Water Disinfection Using Bismuth Based Modified Photocatalysts: Strategies and Challenges, Journal of Cleaner Production, 297, 126617, 2021.
82. Sharma B., Thakur S., Mamba G., Prateek R.K., Gupta V.K., Thakur Gupta V.K.., Titania Modified Gum Tragacanth Based Hydrogel Nanocomposite for Water Remediation, Journal of Environmental Chemical Engineering, 9, 104608, 2020.
83. Verma A., Thakur S., Mamba G., Prateek R.K., Gupta P., Thakur. Thakur V.K., Graphite Modified Sodium Alginate Hydrogel Composite for Efficient Removal of Malachite Green Dye, International Journal of Biological Macromolecules, 148, 1130–1139, 2020.
84. Rana A.K., Mishra Y.K., Gupta V. K., Thakur V.K., Sustainable Materials in the Removal of Pesticides from Contaminated Water: Perspective on Macro to Nanoscale Cellulose, Science of the Total Environment, 797, 149129, 2021.
85. Trache D., Thakur V.K., Boukherroub R., Cellulose Nanocrystals/Graphene Hybrids—A Promising New Class of Materials for Advanced Applications, Nanomaterials, 10, 1523, 2020.
86. Miculescu M., Thakur V.K., Miculescu F., Voicu S.I., Graphene-Based Polymer Nanocomposite Membranes: A Review, Polymers for Advanced Technologies, 27, 844–859, 2016.
87. Chandel N., Sharma K., Sudhaik A., Raizada P., Hosseini-Bandegharaei A., Thakur V.K., Singh P., Magnetically Separable ZnO/Znfe2O4 and ZnO/Cofe2O4 Photocatalysts Supported onto Nitrogen-Doped Graphene for Photocatalytic Degradation of Toxic Dyes, Arabian Journal of Chemistry, 13, 4324–4340, 2020.