بررسی مشخصات پتروگرافی و ژئوشیمیایی نهشته¬های کربناته سازند جمال در برش چاه¬ریسه، شمال شرق اصفهان
محورهای موضوعی : ژئوشیمیبهراد ذبحی کمند 1 , محمد علی صالحی 2 , عزت حیدری 3 , علی بهرامی 4
1 - دانشگاه اصفهان
2 - دانشگاه اصفهان
3 - دانشگاه ایالتی جکسون
4 - دانشگاه اصفهان
کلید واژه: ژئوشیمی, عناصر اصلی و فرعی, ایزوتو¬های اکسیژن و کربن , پرمین, دولومیت, دیاژنز,
چکیده مقاله :
سازند جمال به سن پرمین میانی در برش چاه ریسه مورد مطالعه رسوب شناسی و ژئوشیمی رسوبی قرار گرفته است. بر اساس مطالعات صحرایی انجام گرفته در این تحقیق، سازند جمال با ضخامت 251 متر به 8 واحد لیتواستراتیگرافی تفکیک شده است. مرز زیرین این سازند که مصادف با گذر از دوره کربونیفر به پرمین است به صورت ناپیوسته و مرز بالا نیز ناپیوسته با سازند سرخ شیل به سن تریاس زیرین است. با توجه به پتروفاسیس های آواری و ریزرخساره های کربناته شناسایی شده در سازند جمال و بر اساس ارتباطات رخسارهای و همچنین تغییرات تدریجی آنها یک رمپ کربناته کم عمق برای ته نشست نهشته های آواری و کربناته این سازند در نظر گرفته شده است. در برش مورد مطالعه بر اساس مطالعات پتروگرافی صورت گرفته چهار نوع دولومیت شناسایی شده است. مدل دولومیتی شدن برای نهشته های دولومیتی سازند جمال در دولومیتهای نوع اول مربوط به پهنههای جزر و مدی و برای سایر دولومیتها از نوع مدل دولومیتی دفنی میباشد. مطالعات ژئوشیمیایی انجام شده شامل آنالیز عناصر اصلی و فرعی شامل عناصر کلسیم (Ca)، منیزیم (Mg)، استرانسیوم (Sr)، منگنز (Mn) و آهن (Fe) بوده است. نسبتهای مورد نظر از این عناصر و همچنین با مقابل قرار دادن برخی از عناصر با ایزوتوپ های اکسیژن و کربن در نمودارهای مختلف جهت تعیین و تفکیک کانی شناسی اولیه نهشته های کربناته و همچنین تعیین سیستم دیاژنتیکی تأثیرگذار بر روی سازند جمال مورد استفاده قرار گرفته است. سیستم دیاژنتیکی حاکم بر سازند جمال نیمه بسته بوده و همچنین کانی شناسی اولیه مربوط به آن آراگونیت بوده است. بررسی مقادیر عناصر اصلی و فرعی نمونه های دولومیتی منجر به تفکیک چهار نوع دولومیت گردیده است که در مطالعات پتروگرافی نیز بر اساس مشخصات نظیر اندازه بلور ویژگی های متفاوت دارند. داده های ایزوتوپی اکسیژن و کربن نمونههای دولومیتی نیز شرایط دیاژنتیکی تشکیل انواع آنها را مشخص کرده است.
The Middle Permian Jamal Formation have been investigated for sedimentological and geochemical aspects in the Chah-Riseh section, northeast Isfahan. According to the field studies the Jamal Formation with 251 m thickness divided into eight lithostratigraphic unit. Lower boundary of this formation with an unconformity is underlained by the Sardar Formation which belongs to the Carboniferous period and upper boundary with an unconformity reaches to the Lower Triassic Sorkh-Shale Formation. Facies and microfacies studies of the Jamal Formation led to the identification of two petrofacies and 14 carbonate microfacies. According to the recognized carbonate allochems, petrofacies and microfacies of the Jamal Formation and some evidence such as transitional microfacies changes, we can consider a depositional environment of a shallow mixed siliciclastic-carbonate ramp platform. Petrographically, four types of dolomites are recognized in the Jamal Formation. The dolomitization model for the type I dolomite is considered forming in tidal flat and burial dolomitization for types II, III and IV. Geochemical studies including major and trace elements analysis comprised of elements such as Ca, Mg, Sr, Mn and Fe. Using ratios of the elements and also by plotting some of these elements cross carbon and oxygen isotopes in various diagrams have been used in determining the original mineralogy of carbonate deposits and efficient diagenetic system on the Jamal Formation. The results indicate that the dominant diagenetic environment effected on the carbonate deposits of Jamal Formation was occurred in a semi-closed system and the original mineralogy was aragonite. Evaluation of major and trace elements contents of the four types dolomites, confirmed different characteristics of theses dolomite resembling crystal sizes in petrographic studies. Carbon and oxygen isotopes data of dolomites also defined their diagenetic situations.
آدابی، م. ح.، 1392، ژئوشیمی رسوبی، انتشارات آرین زمین، تهران، 503 ص.
باقری، ن.، 1381، بیواستراتیگرافی نهشتههای پرمین در شمال شرق اصفهان (جنوب چاهریسه، شمال دیزلو) براساس مطالعه کنودونت و ماکروفسیل¬ها: پایان نامه کارشناسی ارشد، دانشگاه اصفهان، 111 ص.
ذبحی کمند، ب.، 1399، بررسی رخساره¬ها، محیط رسوبی و چینه¬نگاری سکانسی سازند جمال (پرمین) در منطقه چاه¬ریسه، شمال شرق اصفهان: پایان نامه کارشناسی ارشد، دانشگاه اصفهان، 93 ص.
ADABI, M.H., 2009, Multistage dolomitization of upper Jurassic Mozduran Formation, Kopeh-Dagh basin NE Iran. Carbonates and Evaporites, 24(1), 16-32.
AMERI, H., YAZDI, M., and BAHRAMI, A., 2017, Pseudophillipsia (Carniphillipsia) (Trilobite) from the Permian Jamal Formation, Isfahan, Iran. Journal of Sciences, Islamic Republic of Iran, 28(4), 325–336.
AMTHOR, J.E., and FRIEDMAN, G.M., 1992, Early to late diagenetic dolomitization of platform carbonates; Lower Ordovician Ellenburger Group, Permian Basin, West Texas. Journal of Sedimentary Petrology, 62(1), 131-144.
AREFIFARD, S., and DAVYDOV, V.I., 2005, Petrography and geochemistry of Permian Strata in Tabas and Kalmard regions, Eastern-Central Iran. Geophysical Research Abstracts, v. 7, 7p.
AREFIFARD, S., 2017, Sea level drop, paleoenvironmental change and related biotic responses across Guadalupian-Lopingian boundary in southwest, North and Central Iran. Geological Magazine, 155(4), 921-943.
BRAND, U., and VEIZER, J., 1980, Chemical diagenesis of a multicomponent carbonate system-1: Trace elements. Journal of Sedimentary Petrology, 50(4), 1219-1236.
FLUGEL, E., 2010, Microfacies of Carbonate Rocks Analysis, Interpretation and Application. Springer, Berlin, 1006 p.
FRIEDMAN, G.M., 1965, Terminology of crystallization textures and fabrics in sedimentary rocks. Journal of Sedimentary Petrology, 35(3), 643-655.
GREGG, J.M., and SIBLEY, D.F., 1984, Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Petrology, 54(3), 908-931.
GREGG, J.M., 1988, Origins of dolomite in the offshore facies of the Bonneterre Formation (Cambrian), Missouri, in Shukla, V., and Baker, P.A., eds., Sedimentology and Geochemistry of Dolostones: SEPM Special publication, 43, 67-83.
GREGG, J.M., and SHELTON, K.L., 1990, Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeast Missouri. Journal of Sedimentary Petrology, 60(4), 549-562.
JAMES, N.P., and JONES, B., 2016, Origin of Carbonate Sedimentary Rocks. John Wiley and Sons, Alberta, 467p. LAND, L.S., 1985, The origin of massive dolomite. Journal of Geological Education, 33(2), 112-125.
LEE, Y.I., and FRIEDMAN, G.M., 1987, Deep burial dolomitization in the Ordovician Ellenburger group carbonates, West Texas and southeastern New Mexico. Journal of Sedimentary Petrology, 57(3), 544-557.
MAZZULLO, S.J., 1992, Geochemical and neomorphic alteration of dolomite: a review. Carbonates and Evaporites, 7(I), 21-37.
MITCHELL, J.T., LAND, L.S., and MISER, D.E., 1987, Modern marine dolomite cement in a north Jamaican fringing reef. Geology, 15(6), 557-560.
MILLIMAN, J.D., 1974, Marine Carbonates. Recent Sedimentary Carbonates, Part 1. Springer, New York, Xv, 375p.
MORROW, D.W., 1982a, Diagenesis 1. Dolomite- Part 1: The chemistry of dolomitization and dolomite precipitation. Geoscience Canada, 9(1), 5-13.
MORROW, D.W, 1982b, Diagenesis 2. Dolomite- Part 2: Dolomitization models and ancient dolostones. Geoscience Canada, 9(2), 95-107.
PERMOPHILES, 2008, Newsletter of the subcommission on Permian Stratigraphy Number, 51, 1684-5927.
QING, H., and Mountjoy, E.W., 1989, Multistage dolomitization in rainbow buildups, middle Devonian Keg River Formation, Alberta, Canada. Journal of Sedimentary Petrology, 59(1), 114-126.
RAO, C.P., 1991, Geochemical differences between subtropical (Ordovician), cool temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia. Carbonates and Evaporites, 6(1), 83-106.
RAO, C.P., and Adabi, M.H., 1991, Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia. Marine Geology, 103, 249-272.
RAO, C.P., 1996, Modern Carbonates, Tropical, Temperate, Polar: Introduction to Sedimentology and Geochemistry. Carbonates, Howrah, Tasmania, 206 p.
SALLER, A.H., 1984, Petrologic and geochemical constraints on the origin of subsurface dolomite, Enewetak Atoll: An example of dolomitization by normal seawater. Geology, 12(4), 217-220.
SHUKLA, V., and FRIEDMAN, G.M., 1983, Dolomitization and diagenesis in a shallowing upward sequence; the Lockport formation (middle Silurian), New York State. Journal of Sedimentary Petrology, 53(3), 703-717.
SIBLEY, D.F., and GREGG, J.M., 1987, Classification of dolomite rock textures. Journal of Sedimentary Petrology, 57(6), 967-975.
STÖCKLIN, J., EFTEKHAR-NEZHAD, J., and HUSHMAND-ZADEH, A., 1965, Geology of the Shotori Range (Tabas Area, East Iran). Geological Survey of Iran, Tehran, Report No. 3, 1-69.
STÖCKLIN, J., and NABAVI, M.H., 1971, Explanatory text of the Boshruyeh Quadrangle Map. Geological Survey of Iran, Tehran, Quadrangle, No. v. J78, 50 p.
YARAHMADZAHI, H. and LEVEN, E.J., 2021, Middle Permian (Late Murgabian) Fusulinids of the Jamal Formation, Tabas Area, Iran. Stratigraphy and Geological Correlation, 29(5), 495-503.
YAZDI, M., 1999, Late Devonian-Carboniferous conodonts from Eastern Iran. Rivista Italiana di paleontologia e Stratigrafia, 105, I, 2, 167-200.
YAZDI, M., and SHIRANI, M., 2002, first research on marine and nonmarine sedimentology sequences and micropaleontologic significance across Permian-Triassic boundary in Iran (Isfahan & Abadeh). Journal of China University of Geosciences, 13, 172-176.