مروری بر غشاهای بر پایه پلی سولفون در جداسازی لیپوپروتئین با چگالی کم از خون
محورهای موضوعی : پلیمرها در انرژی و کاربردهای بهداشتی و محیطیرحیم دهقان 1 , جلال برزین 2 , بهنام دارابی 3 , حمیدرضا قادری 4
1 - گروه بایومتریال، پژوهشگاه پلیمر و پتروشیمی ایران
2 - گروه بایومتریال، پژوهشگاه پلیمر و پتروشیمی ایران
3 - شیراز، دانشگاه علوم پزشکی شیراز، دانشکده پیراپژشکی
4 - فسا، دانشگاه علوم پزشکی فسا، دانشکده فناوری های نوین، گروه مهندسی بافت
کلید واژه:
چکیده مقاله :
بیماری های قلبی و عروقی شایع ترین دلیل مرگ و میر در سرار جهان به شمار می آید. افزایش بیش از حد سطح لیپوپروتئین با چگالی کم (low density lipoprotein) در خون به عنوان اصلی ترین دلیل بیماری های عروق کرونری و تصلب شرایین محسوب می شود. جداسازی LDL از خون یکی از انتخاب های سخت افزاری برای این منظور و بخصوص بیمارانی که با دارودرمانی بهبود نمی یابند می باشد. روش های جداسازی LDL بطور کلی به دو دسته روش های مبتنی بر جذب و فیلتراسیون آبشاری تقسیم بندی می شوند. در این مطالعه علاوه بر اینکه به بررسی مروری این روش ها پرداخته شده، استفاده از غشاهای برپایه پلی سولفون در جداسازی LDL مورد بررسی قرار داده شده است. سپس با الهام از ساختار گیرنده ذاتی LDL در بدن (LDLR)، روش های اصلاح متفاوتی همچون هپارینه کردن با روش های مختلف از قبیل کلرومتیل دار کردن غشا، اصلاح با پلاسمای آمونیاک، اصلاح از طریق پلی دپامین و پلی اتیلن ایمین، گلیکوزیله کردن غشا با روش شیمی کلیک و اتصال آلژینات سولفات به سطح غشای پلی-سولفون از روش های اصلاحی بوده که به منظور جذب LDL از آن استفاده شده است. به منظور بررسی صحت فرآیند اصلاح از آزمون های مختلفی همچون طیف سنجی تبدیل فوریه (ATR-FTIR) ، اسپکتروسکوپی با اشعه ایکس( XPS) ، اندازه گیری زاویه تماس آب و پتانسیل زتا استفاده می شود. همچنین خون سازگاری این دسته از غشاها از موارد اساسی در توسعه آنها برای کاربرد ذکر شده میباشد.
Cardiovascular diseases are the most common cause of fatality all over the world. A severe increase of low-density lipoprotein (LDL) concentration in blood is recognized as the main cause of coronary artery disease (CAD) and atherosclerosis. LDL apheresis from blood is one of the extracorporeal options for patients suffering from this disorder which drug therapy is not effective for them. LDL apheresis is classified in cascade filtration and adsorption-based methods. In this study further reviewing all LDL apheresis techniques, polysulfone (PSU) membranes for selective adsorption of LDL were investigated. By inspiring from inherent LDL receptor (LDLR) of body, different methods including heparinization of PSU membrane by various methods such as chloromethylation, treatment with ammonia plasma and co-deposition of polydopamine and polyethyleneimine can be used for adsorption of LDL from the blood. Also, membrane ionic glycosylation by click chemistry and grafting of alginate sulfate on the surface of PSU membrane to adsorption of LDL were reviewed. To investigate surface modification accuracy, different analyses such as X-ray photo spectroscopy (XPS), Attenuated total reflectance Fourier transform infrared (ATR-FTIR), -Potential and water contact angle are used. Blood compatibility is another factor for the development of these membranes for defined application.
1. Cai A., Li L., Zhang Y., Mo Y., Mai W., and Zhou Y., Lipoprotein (a): A Promising Marker for Residual Cardiovascular Risk Assessment, Diseases Markers, 35, 551-559, 2013.
2. National Institute of Health, http://www.nlm.nih.gov/medlineplus/blood.html, Available in September 2021.
3. Dehghan R. and Koosha M., Specification of Polyurethane as Prosthetic Heart Valve, Polymerization, 5, 48-60, 2015.
4. Marinetti G.V., Disorders of Lipid Metabolism, New York, Springer Science & Business Media, 89-95, 2012.
5. De Castro-Orós I., Pocoví M., and Civeira F., The Genetic Basis of Familial Hypercholesterolemia: Inheritance, Linkage, and Mutations, The Application of Clinical Genetics, 3, 53-54, 2010.
6. Yang C. Y., Chen S. H., Gianturco S. H., Bradley W. A., Sparrow J. T., Tanimura M., Li W. H., Sparrow D. A., Deloof H., Rosseneu M., and Lee F.S., Sequence, Structure, Receptor-Binding Domains and Internal Repeats of Human Apolipoprotein B-100, Nature, 323, 738-742, 1986.
7. Fox K.M., Gandhi S.K., Bullano M.F., Ohsfeldt R.L., and Davidson M.H., Low-Density Lipoprotein Levels and Dyslipidemia Treatment in Patients Diagnosed with Atherosclerosis, In Circulation, 117, E425-E426, 2008.
8. Huang X.J., Guduru D., Xu Z.K., Vienken J., and Groth T., Immobilization of Heparin on Polysulfone Surface for Selective Adsorption of Low-Density Lipoprotein (LDL), Acta Biomaterialia, 6, 1099-1106, 2010.
9. Duell P.B., Low-Density Lipoprotein (LDL) Apheresis, Dyslipidemias, NewYork, Humana Press, 2015.
10. Hudgins L.C., Gordon B.R., Parker T.S., Saal S.D., Levine D.M., and Rubin A.L., LDL Apheresis: An effective and Safe Treatment for Refractory hypercholesterolemia, Cardiovascular Drug Reviews, 20, 271-280, 2002.
11. Encyclopedia Britannica, Low density lipoprotein physiology, https://www.britannica.com/science/low-density-lipoprotein, available in June 2021.
12. Orlova E.V., Sherman M.B., Chiu W., Mowri H., Smith L.C., and Gotto A.M., Three-Dimensional Structure of Low Density Lipoproteins by Electron Cryomicroscopy, Proceedings of the National Academy of Sciences, 96, 8420-8425, 1999.
13. Moffatt R.J. and Stamford B., Lipid Metabolism and Health. CRC Press, 2005.
14. Camacho P., Clinical Endocrinology and Metabolism, Manson publishing, Maywood illions, USA , 171-173, 2011.
15. Harisa G.I., and Alanazi F.K., Low Density Lipoprotein Bionanoparticles: From Cholesterol Transport to Delivery of Anti-Cancer Drugs, Saudi Pharmaceutical Journal, 22, 504-515, 2014.
16. Bambauer R., Bambauer C., Lehmann B., Latza R., and Schiel R., LDL-Apheresis: Technical and Clinical Aspects, The Scientifc World Journal, 2012.
17. Selecti cure H19 cascade filter, www.membrana.com, available in may 2020.
18. Borberg H., Results of An Open, Longitudinal Multicenter LDL-Apheresis Trial, Transfusion Science, 20, 83–94, 1999.
19. Bambauer R., Schiel R., Latza R., Current Topics on Low-Density Lipoprotein Apheresis Methods. Therapeutic Apheresis, 5, 293–300, 2001.
20. Seidel D., Wieland H., Ein Neues Verfahren zur Selektiven Messung und Extrakorporalen Elimination von Low-Density Lipoproteinen, Journal of Clinical Chemistry and Clinical Biochemistry, 20, 684. 1982.
21. Bambauer R., Olbricht C.J., and Schoeppe E., Low-Density Lipoprotein Apheresis for Prevention and Regression of Atherosclerosis: Clinical Results, Therapeutic Apheresis, 1, 242–248, 1997.
22. Bosch T., Lennertz A., Schmidt B., Fink E., Keller C., DALI Apheresis in Hyperlipidemic Patients: Biocompatibility, Efcacy, and Selectivity of Direct Adsorption of Lipoprotein from Whole Blood, Artificial Organs, 24, 81–90, 2000.
23. Barzin J., Feng C., Khulbe K.C., Matsuura T., Madaeni S.S., and Mirzadeh H., Characterization of Polyethersulfone Hemodialysis Membrane by Ultrafiltration and Atomic Force Microscopy, Journal of Membrane Science, 237, 77-85. 2004.
24. Fang F., Zhu X.Y., Chen C., Li.J., Chen D.J., and Huang X.J., Anionic Glycosylated Polysulfone Membranes for the Affinity Adsorption of Low-Density Lipoprotein via Click Reactions, Acta biomaterialia, 49, 379-387, 2017.
25. Wang L., Fang F., Liu Y., Li J., and Huang X., Facile Preparation of Heparinized Polysulfone Membrane Assisted by Polydopamine/Polyethyleneimine Co-deposition for Simultaneous LDL Selectivity and Biocompatibility, Applied Surface Science, 385, 308-317, 2016.
26. Huang X.J., Guduru D., Xu Z.K., Vienken J., and Groth T., Blood Compatibility and Permeability of Heparin‐Modified Polysulfone as Potential Membrane for Simultaneous Hemodialysis and LDL Removal. Macromolecular Bioscience, 11, 131-140, 2011.
27. Li J., Huang X.J., Ji J., Lan P., Vienken J., Groth T., and Xu Z.K., Covalent Heparin Modification of a Polysulfone Flat Sheet Membrane for Selective Removal of Low‐Density Lipoproteins: A simple and versatile method. Macromolecular Bioscience, 11, 1218-1226, 2011.
28. Wang W., Huang X.J., Cao J.D., Lan P., and Wu W., Immobilization of Sodium Alginate Sulfates on Polysulfone Ultrafiltration Membranes for Selective Adsorption of Low-Density Lipoprotein, Acta Biomaterialia, 10, 234-243, 2014.
29. Aksoy E.A., Synthesis and Surface Modification Studies of Biomedical Polyurethanes to Improve Long-term Biocompatibility, Ph.D Thesis, Middle East Technical University, July 2008.