مروری بر غشاهای جدید اسمز معکوس و کاربردهای آن
محورهای موضوعی : زیست پلاستیک ها و پلیمرهای تجديد پذیر
1 - دانشگاه تهران جنوب
کلید واژه: غشای اسمز معکوس, سلولزاستات, لایه نازک کامپوزیتی, پلی آمید, نانوذرات,
چکیده مقاله :
اسمز معکوس در بین دیگر فرایندهای غشایی محبوبیت بیشتری دارد؛ به طوری که پیش بینی شده است که ارزش بازار جهانی آن تا سال 2026 به 5 میلیارد دلار برسد. عدم استفاده از مواد شیمیایی، مقاومت مکانیکی بالا تعمیر، نگه داری و توسعه آسان از ویژگی های غشای اسمز معکوس است. غشای سلولزاستات قدیمی ترین نوع غشای اسمز معکوس است که شامل یک لایه بالایی روی یک لایه متخلخل پشتیبان است که با افزایش درجه استیل دار شدن، انتخاب پذیری و شار عبوری از غشا نیز افزایش پیدا می کند. غشای لایه نازک کامپوزیتی در ترکیب با پلی آمید ضعف های غشای سلولزاستات را کاهش داده است. ساختار غشای لایه نازک کامپوزیتی- پلی آمیدی شامل لایه انتخاب پذیر نازک روی پشتیبان متخلخل است. لایه پشتیبان خواص مکانیکی غشا را افزایش می دهد. استفاده از نانوذرات و نانو لوله های کربنی در ساختار غشای لایه نازک می تواند به طور قابل توجهی سبب افزایش شار عبوری از غشا با حفظ میزان حذف املاح شود. نمک زدایی از آب لب شور و دریا، کاهش سختی آب ورودی به دیگ بخار، تصفیه پساب نفتی، حذف فلزات سنگین و... تعدادی از کاربردهای غشای اسمز معکوس است. در این مقاله به جنس، کاربرد و توسعه های اخیر غشاهای اسمز معکوس پرداخته شده است.
-
1. Ezugbe E.O., Rathilal S., Membrane Technologies in Wastewater Treatment: A Review, Membranes, 10, 89, 2020.
2. Zioui D., Tigrine Z., Aburideh H., Hout S., Abbas M., Merzouk N.K., Membrane Technology for Water Treatment Applications, Journal of Environmental Chemical Engineering, 6, 153-157, 2015.
3. Zirehpour A., Rahimpour A., Membranes for Wastewater Treatment, Nanostructured Polymer Membranes; John Wiley & Sons Ltd.: London, UK 2, 159-207, 2016.
4. Takht Ravanchi M., Kaghazchi T., Kargari A., Application of Membrane Separation Process in Petrochemical Industry: A Review, Desalination, 235, 199-244, 2009.
5. Jafarinejad Sh., A Comprehensive Study on The Application of Reverse Osmosis Technology for The Petroleum Industry Wastewater Treatment, Journal of Water and Environmental Nanotechnology, 2, 243-264, 2017.
6. Garud R.M., Kore S.V., Kullarani G.S., A Short Review on Process and Applications of Reverse Osmosis, Universal Journal of Environmental Research & Technology, 1, 2011.
7. Reverse Osmosis Membrane Market by Type, End-Use Industry, Filter Module, Application and Region - Global Forecast To 2026 - Researchandmarkets.Com, https://www.businesswire.com/news/home/20210817005723/en/Reverse-Osmosis-Membrane-Market-by-Type-End-use-Industry-Filter-Module-Application-and-Region---Global-Forecast-to-2026---ResearchAndMarkets.com (https://www.businesswire.com/news/home/20210817005723/en/Reverse-Osmosis-Membrane-Market-by-Type-End-use-Industry-Filter-Module-Application-and-Region---Global-Forecast-to-2026---ResearchAndMarkets.com).htm available in 2021.
8. Ghernaout D., Ei-Wakil A., Short Communication: Requiring Reverse Osmosis Membranes Modifications- An Overview, American Journal of Chemical Engineering, 5,81-88, 2017.
9. What is Reverse Osmosis?, https://puretecwater.com/reverse-osmosis/what-is-reverse-osmosis (https://puretecwater.com/reverse-osmosis/what-is-reverse-osmosis).htm available in 2021.
10. Ismail A.F., Khulbe K.C, and Matsuura T., Reverse Osmosis, Elsevier, 2018.
11. Khulbe K.C., Matsuura T., Recent Progress in Preparation and Characterization of RO Membranes, Journal of Membrane Science, 3, 174-186, 2017.
12. Khulbe K.C., Matsuura T., Thin Film Composite and/ or Thin Film Nanocomposite Hollow Fiber Membrane for Water Treatment, Pervaporation, and Gas/Vapor Separation, Polymers, 10, 1051, 2018.
13. Warsinger D.M., Chakraborty S., Tow E.W., Plumlee M.H., Bellona C., Loutatidou S., Karimi L., And et al., A Review of Polymeric Membranes and Processes for Potable Water Reuse, Progress in Polymer Science, 81, 209-237, 2018.
14. Peng Lee K., Arnot T.C., Mattia D., A Review of Reverse Osmosis Membrane Material for Desalination Development to Date and Future Potential, Journal of Membrane Science, 370, 1-22, 2011.
15. Yang Z., Zhou Y., Feng Z., Rui X., Zhang T., Zhang Z., A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification, Polymers, 11, 1252, 2019.
16. Duarte A.P., Cidade M.T., Bordado J.C., Cellulose Acetate Reverse Osmosis Membranes: Optimization of the Composition, Journal of applied polymer science, 103, 4052–4058, 2007.
17. Silva J., Abreu A.S., Oliveira M., Machado A.V., Development of Cellulose Acetate Membranes Containing Nanoparticles for Water Applications, Materials, 21-23, 2015.
18. Mayyahi A.A., Important Approaches to Enhance Reverse Osmosis Thin Film Composite Membrane Performance, Membranes, 8, 68, 2018.
19. Wiles L., Peirtsegele E., Reverse Osmosis: A History and Explanation of the Technology and How It Become So Important for Desalination, IWC, 18, 49, 2018.
20. Li W.X., Yang Z., Liu W.L., Huang Z.H., Zhang H., Li M.P., Ma X.H., Polyamide Reverse Osmosis Membranes Containing 1D Nanochannels for Enhanced Water Purification, Journal of Membrane Science, 618, 118681, 2021.
21. Ng Z.C., Lau W.J., Matsuura T., Ismail A.F., Thin Film Nanocomposite RO Membranes: Review On Fabrication Techniques and Impacts of Nanofiller Characteristics on Membrane Properties, Chemical Engineering Research and Design, 165, 81-105, 2020.
22. Ma X.H., Yao Z., Yang Z., Guo H., Xu Z., Tang C.Y., Elimelech M., Nanofoaming of Polyamide Desalination Membranes to Tune Permeability and Selectivity, Environmental Science & Technology Letters, 5, 123–130, 2018.
23. Wang R., Chen D., Wang Q., Ying Y., Geo W., Xie L., Recent Advances in Applications of Carbon Nanotubes for Desalination: A Review, Nanomaterials, , 10, 1203, 2020.
24. Yang Z., Huang X., Ma X.H., Zhou Z.W., , Guo H., Yao Z., Feng S.P., Fabrication of a Novel and Green Thin-Film Composite Membrane Containing Nanovoids for Water Purification, Journal of Membrane Science, 570, 314-321, 2019.
25. Ali S.S., Abdallah H., Development of PES/CA Blend RO Membrane for Water Desalination, International Review of Chemical Engineering, 4, 316-323, 2012.
26. Bodalo, A., Gomez, J. L., Gomez, E., Leon, G., Tejera, M., Ammonium Removal From Aqueous Solutions by Reverse Osmosis Using Cellulose Acetate Membranes, Desalination, 184, 149-155, 2005.
27. Khorshidi B., Thundat T., Fleck B.A., Sadrzadeh M., A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes, Scientific Reports, 6, 1-10, 2016.
28. Kim H.J., Choi K., Baek Y., Kim D.G., Shim J., Yoon J., Lee J.C., High-Performance Reverse Osmosis CNT/Polyamide Nanocomposite Membrane By Controlled Interfacial Interactions, ACS Applied Materials & Interfaces, 6, 2819–2829, 2014.
29. Inukai S., Cruz-Silva R., Ortiz-Medina J., Morelos-Gomez A., Takeuchi K., Hayashi T., Tanioka A., and et al, High-Performance Multi-Functional Reverse Osmosis Membranes Obtained by Carbon Nanotube/Polyamide Nanocomposite, Scientific Reports, 5, 1-10, 2015.
30. Peyki A., Rahimpour A., Jahanshahi M., Preparation and Characterization of Thin Film Composite Reverse Osmosis Membranes Incorporated With Hydrophilic Sio2 Nanoparticles, Desalination, 368, 152–158, 2015.
31. Reverse Osmosis (RO): Know About Its Industrial Applications, https://www.intec-america.com/blog/reverse-osmosis-ro-industrial-applications/ (https://www.intec-america.com/blog/reverse-osmosis-ro-industrial-applications/).htm , available in 2021.
32. Kim K.H., Hong S., Kim J., Lee H., Preparation and Performance Evaluation of Composite Hollow Fiber Membrane for SO2 Separation, AIChE Journal, 60, 2298-2306, 2014.
33. Ghaseminezhad S.m., Barikani M., Salehirad M., Development of Graphene Oxide-Cellulose Acetate Nanocomposite Reverse Osmosis Membrane for Seawater Desalination, Composites Part B: Engineering, 161, 320-327, 2019.
34. Ranaraja C.D., Devasurendra J.W., Maduwantha M., Madhuwantha G., Hansa R., Optimization of an Industrial Boiler Operation, Journal of Research Technology And Engineering, 1, 126-134, 2020.
35. Kusworo T.D., Kumoro A.N., Utomo D.P., Phenol and Ammonia Removal in Petroleum Refinery Wastewater Using A Poly(Vinyl) Alcohol Coated Polysulfone Nanohybrid Membrane, Journal of Water Process Engineering, 39, 101718, 2021.
36. Salehi A., Mohammadi T., Nikbakht M., Golshenas M., Noshadi I., Purification of Biologically Treated Tehran Refinery Oily Wastewater Using Reverse Osmosis, Desalination Water Treatment., 48, 27-37, 2012.
37. Venzke C.D., Giacobbo A., Bernardes A.M., Rodrigues M., Petrochemical Industry: Wastewater Treatment for Water Reuse, Proceedings of 15th International Conference on Environmental Science and Technology-CEST2017, Global NEST, Rhodes, Grece, 2017.
38. Ghadak P., Fardi G.R., Mirbagheri S.A., Application of Reverse Osmosis Membranes for Mercury Removal from Refinery Wastewater, Modares Civil Engineering Journal, 15, 91-101, 2015.
39. Sun j., Yi z., Zhao X., Zhou Y., Gao C., CO2 Separation Membranes with High Permeability and CO2/N2 Selectivity Prepared by Electrostatic Self-Assembly of Polyethylenimine on Reverse Osmosis Membranes, RSC Advances, 7, 14678-14687, 2017.