یک روش تحلیلی بر پایه نظریه تابع سیمپیچی و مدل مدار معادل مغناطیسی برای آنالیز الکترومغناطیسی موتورهای القایی تحت شرایط کاری سالم و خطای میله شکسته در رتور
محورهای موضوعی : مهندسی برق و کامپیوترفرهاد رضایی علم 1 , عبدالصمد حميدي 2 , وحيد نائيني 3
1 - دانشکده فنی و مهندسی، دانشگاه لرستان
2 - دانشکده فنی و مهندسی، دانشگاه لرستان
3 - گروه آموزشی مهندسی برق، دانشگاه ملایر
کلید واژه: اندوکتانس, مدار معادل مغناطیسی (MEC), موتور القایی با رتور قفسی (CRIM), نظریه تابع سیمپیچی (WFT), نیروی محرکه مغناطیسی (MMF),
چکیده مقاله :
در این مقاله یک مدل تحلیلی هیبرید بر پایه نظریه تابع سیمپیچی برای موتورهای القایی با رتور قفسی ارائه میشود که از مدل مدار معادل مغناطیسی برای لحاظکردن اثر شیار و اشباع مغناطیسی در هستههای استاتور و رتور کمک میگیرد. تحت شرایط کاری سالم و خطای میله شکسته در رتور و برای هر نقطه کار، از یک مدار معادل مغناطیسی غیر خطی برای محاسبه افت نیروی محرکه مغناطیسی در بخشهای آهنی استاتور و رتور استفاده میشود. توزیع افت MMF در استاتور و رتور به طور جداگانه بر حسب یک توزیع از جریانهای مجازی معادل و یک تابع سیمپیچی مجازی بیان میشود. سپس اندوکتانسها با در نظر داشتن اثر شیارها و اشباع مغناطیسی با استفاده از WFT محاسبه میگردند. به منظور مدلسازی راهاندازی بیبار موتور تحت شرایط کاری سالم و خطای میله شکسته، دستگاه معادلات دیفرانسیل الکتریکی و مکانیکی به طور همزمان با استفاده از روش تفاضلات متناهی حل میشوند. از روش هیگ و یک نگاشت همدیس ساده برای محاسبه و آنالیز میدان مغناطیسی فاصله هوایی استفاده میگردد. به منظور راستیآزمایی مدل ارائهشده، بعضی از نتایج تحلیلی با نتایج نظیر به دست آمده از روش اجزای محدود مقایسه میشوند.
In this paper, one hybrid analytical model (HAM) based on winding function theory (WFT) was presented for cage-rotor induction motors (CRIMs), which helps from the magnetic equivalent circuit (MEC) for considering the effect of slots and magnetic saturation in stator and rotor cores. A non-linear MEC model is used to calculate the magneto motive force (MMF) drops in iron parts of stator and rotor for every operating point under the healthy condition and broken-rotor bar (BRB) fault. The distribution of MMF drop in stator and rotor is separately expressed in terms of the distribution of equivalent virtual currents and the virtual winding function. The inductances are then calculated using WFT while considering the effect of slots and magnetic saturation. To model the starting of no-load CRIM, the system of electrical and mechanical differential equations is solved using the finite difference method (FDM) under the healthy condition and BRB fault. Hague's solution and one simple conformal mapping (CM) are used to calculate and analysis of air-gap magnetic field. To verify the proposed model, some analytical results are compared with the corresponding results obtained through finite element method (FEM).
[1] M. Al Saaideh, N. Alatawneh, and M. Al Janaideh, "Multi-objective optimization of a reluctance actuator for precision motion applications," J. of Magnetism and Magnetic Materials, vol. 546, Article ID: 168652, Mar. 2022.
[2] F. Mahmouditabar, A. Vahedi, and P. Ojaghlu, "Investigation of demagnetization phenomenon in novel ring winding AFPM motor with modified algorithm," J. of Magnetism and Magnetic Materials, vol. 491, Article ID: 165539, Dec. 2019.
[3] B. Asad, T. Vaimann, A. Belahcen, A. Kallaste, A. Rassõlkin, and M. N. Iqbal, "Modified winding function-based model of squirrel cage induction motor for fault diagnostics," IET Electric Power Application, vol. 14, no. 9, pp. 1722-1734, Sept. 2020.
[4] M. Ojaghi, M. Sabouri, and J. Faiz, "Performance analysis of squirrel-cage induction motors under broken rotor bar and stator inter-turn fault conditions using analytical modeling," IEEE Trans. on Magnetics, vol. 54, no. 11, Article ID: 8203705, Nov. 2018.
[5] A. Waheed, B. Kim, and Y. H. Cho, "Optimal design of line start permanent magnet synchronous motor based on magnetic equivalent parameters," J. of Electrical Engineering & Technology, vol. 15, pp. 2111-2119, Sep. 2020.
[6] H. Saneie and Z. Nasiri-Gheidari, "Performance analysis of outer-rotor single-phase induction motor based on magnetic equivalent circuit (MEC)," IEEE Trans. on Industrial Electronics, vol. 68, no. 2, pp. 1046-1054, Feb. 2021.
[7] K. Boughrara, N. Takorabet, R. Ibtiouen, O. Touhami, and F. Dubas, "Analytical analysis of cage rotor induction motors in healthy, defective, and broken bars conditions," IEEE Trans. on Magnetics, vol. 51, no. 2, Article ID: 8200317, Feb. 2015.
[8] A. Mollaeian, E. Ghosh, H. Dhulipati, J. Tjong, and N. C. Kar, "3-D sub-domain analytical model to calculate magnetic flux density in induction machines with semi-closed slots under no-load condition," IEEE Trans. on Magnetics, vol. 53, no. 6, Article ID: 7206905, Jun. 2017.
[9] M. M. Kiani, W. Wang, and W. J. Lee, "Elimination of system-induced torque pulsations in doubly-fed induction generators via field reconstruction method," IEEE Trans. on Energy Conversion, vol. 30, no. 3, pp. 1228-1236, Sep. 2015.
[10] D. Wu, S. D. Pekarek, and B. Fahimi, "A field reconstruction technique for efficient modeling of the fields and forces within induction machines," IEEE Trans. on Energy Conversion, vol. 24, no. 2, pp. 366-374, Jun. 2009.
[11] T. F. Megahed, "Analytical approach to estimate the polyphase induction machine performance," J. of Magnetism and Magnetic Materials, vol. 514, Article ID: 167119, Nov. 2020.
[12] A. Balamurali, C. Lai, A. Mollaeian, V. Loukanov, and N. C. Kar, "Analytical investigation of magnet eddy current losses in interior permanent magnet motor using modified winding function theory accounting for pulse width modulation harmonics," IEEE Trans. on Magnetics, vol. 52, no. 7, Article ID: 8106805, Jul. 2016.
[13] J. Faiz and F. Rezaee-Alam, "A new hybrid analytical model based on winding function theory for analysis of surface mounted permanent magnet motors," The International J. for Computation and Mathematics in Electrical and Electronic Engineering, vol. 38, no. 2, pp. 745-758, May 2019.
[14] F. Rezaee-Alam, B. Rezaeealam, and S. M. M. Moosavi, "An improved magnetic equivalent circuit model for electromagnetic modeling of electric machines," Iranian J. of Electrical and Electronic Engineering, vol. 17, no. 3, pp. 1965-1965, Sept. 2021.
[15] M. Farhadian, M. Moallem, and B. Fahimi, "Analytical calculation of magnetic field components in synchronous reluctance machine accounting for rotor flux barriers using combined conformal mapping and magnetic equivalent circuit methods," J. of Magnetism and Magnetic Materials, vol. 505, Article ID: 166762, Jul. 2020.
[16] Z. Zhang, C. Xia, Y. Yan, Q. Geng, and T. Shi, "A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines," J. of Magnetism and Magnetic Materials, vol. 435, pp. 136-145, Aug. 2017.
[17] S. Ouagued, Y. Amara, and G. Barakat, "Comparison of hybrid analytical modeling and reluctance network modeling for pre-design purposes," Mathematics and Computers in Simulation, vol. 130, pp. 3-21, Dec. 2016.
[18] S. Li, W. Tong, M. Hou, S. Wu, and R. Tang, "Analytical model for no-load electromagnetic performance prediction of V-shape IPM motors considering nonlinearity of magnetic bridges," IEEE Trans. on Energy Conversion, vol. 37, no. 2, pp. 901-911, Jun. 2022.
[19] B. Ge, W. Liu, J. Dong, and M. Liu, "Extending winding function theory to incorporate secondary effects in the design of induction machines and drives," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 10, no. 2, pp. 1915-1924, Apr. 2022.
[20] B. Ladghem-Chikouche, K. Boughrara, F. Dubas, and R. Ibtiouen, "Two-dimensional hybrid model for magnetic field calculation in electrical machines: exact subdomain technique and magnetic equivalent circuit," International J. for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), vol. 40, no. 3, pp. 535-560, Aug. 2021.
[21] Z. Li, X. Huang, L. Wu, H. Zhang, T. Shi, Y. Yan, B. Shi, and G. Yang, "An improved hybrid field model for calculating on-load performance of interior permanent-magnet motors," IEEE Trans. on Industrial Electronics, vol. 68, no. 10, pp. 9207-9217, Oct. 2021.