ارزيابي ژئوشيميايي نفت هاي خام مخازن سروک و فهليان با استفاده از داده هاي بيومارکري در يکي از ميادين نفتي دشت آبادان
محورهای موضوعی :سید علی معلمی 1 , مهناز امیرحسینی 2 , عزیز اله حبیبی 3
1 - پژوهشکده ازدیاد برداشت از مخازن نفت و گاز
2 - دانشگاه خوارزمی
3 - دانشگاه خوارزمی
کلید واژه: بيومارکر دشت آبادان کروماتوگرافي گازي کروماتوگرافي گازي- طيف سنجي جرمي مخزن سروک مخزن فهليان ,
چکیده مقاله :
در اين مطالعه 8 نمونه نفت خام از مخازن سروک (5 نمونه) و فهليان (3 نمونه) يکي از مهم ترين ميادين نفتي دشت آبادان با استفاده از تکنيک هاي کروماتوگرافي ستوني، کروماتوگرافي گازي (GC) و کروماتوگرافي گازي- طيف سنجي جرمي (GC-MS)، مورد ارزيابي ژئوشيميايي قرار گرفت. نوع نفت مخازن سروک از نوع پارافينيک- نفتنيک و آروماتيک حدواسط و نوع نفت مخزن فهليان از نوع پارافينيک تشخيص داده شد. نسبت هاي بيومارکري مختلف برش هاي اشباع از قبيل نمودار تغييرات نسبت-هايPr/nC17 و Ph/nC18 و نمودار تغييرات نسبت Pr/Ph در برابر نسبت استران هاي C29/C27 (20R) نشانه ي تشکيل سنگ منشأ در يک محيط دريايي احيايي براي نفت هاي هر دو مخزن مورد مطالعه است. همچنين غلظت بالاي استران C29 در برابر C27و C28 نشان ميدهد که مواد آلي سنگ منشأ مورد نظر در يک محيط دريايي تشکيل شده که آثار ورود مواد آلي با کروژن قاره اي نيز در آن مشاهده مي شود. نسبت بالاي مقادير هوپانC29 به هوپانC30 ، تغييرات نسبت استران C27 (Dia/Dia+Reg) در برابر مقادير Pr/(Pr+Ph)، پايين بودن مقادير ديااستران ها در مقابل استران و نمودار تغييرات Sterane/Hopane در مقابل نسبت استران هاي C27/C29 نشانه ليتولوژي کربناتي تا شيلي براي منشأ نفت هاي مورد مطالعه است. با توجه به بالا بودن ميزان رزين، پراکندگي آلکان هاي نرمال، ميزان بالاي نسبت هاي Pr/nC17 و Ph/nC18 و UCM بالاتر نسبت به سايرين، نمونههايK15 و K11 مخزن فهليان و نمونه B5 از مخزن سروک تخريب زيستي کم تا متوسط و نمونه B19 از مخزن سروک تخريب زيستي کمي را نشان مي دهند. برطبق نمودارهاي تغييرات نسبت Pr/nC17 در برابر Ph/nC18، تغييرات C29 Sterane 20S/(20S+20R) در برابر C32 hopane 22S/(22S+22R)، تغييرات نسبت C29 Sterane 20S/(20S+20R) در برابر نسبت C29 Sterane αββ/(αββ+ααα)، زمان تشکيل نمونه هاي دو مخزن مربوط به ابتداي پنجره ي نفتي مي شود و نمونه هاي مخزن فهليان مراحل پيشرفته تري از سطح پختگي را نسبت به نمونه هاي مخزن سروک نشان مي دهند.
In this study, 8 crude oil samples of the Sarvak (5 samples) and Fahliyan (3 samples) reservoirs from one of the main oilfields of the Abadan Plain was assessed geochemically by Liquid Chromatography, Gas Chromatography (GC) and Gas Chromatography Mass Spectrometry (GC-MS) techniques. Types of crude oils of the Sarvak reservoir are Paraffinic Naphtenic and Aromatic Intermediate and are Paraffinic type for the Fahliyan reservoir crude oils. Biomarker ratios of saturate fractions such as variation of Pr/nC17 and Ph/nC18 ratios and Pr/Ph versus C27/C29 (20R) Sterane diagram indicate formation of source rock in reducing marine environment for both oil reservoirs. Furthermore, high amount of C29 Sterane in compare to C27 and C28 Steranes show that organic matter of source rock was formed in marine environment with terrestrial kerogen input. High amount C29 Hopane versus C30 Hopane, variation C27 (Dia/Dia+Reg) Steranes versus Pr/(Pr+Ph), low amount of Diasteranes versus Steranes and variation Sterane/Hopane versus C27/C29 Steranes show carbonate- shale lithology for source rock of studied oils. Depending on high amount of resin, scattering of normal alkanes, high values of Pr/nC17 and Ph/nC18 and higher UCM in compare to other samples, K11 and K15 samples of the Fahliyan reservoir and B5 sample of the Sarvak reservoir demonstrate slight to moderate biodegradation while B19 sample show very slight biodegradation. According to variation of Pr/nC17 vs. Ph/nC18, C29 Sterane 20S/(20S+20R) vs. C32 Hopane 22S/(22S+22R), C29 Sterane 20S/(20S+20R) vs. C29 Sterane αββ/(αββ+ααα) samples from both reservoirs denote early oil window formation. Samples from the Fahliyan reservoir have high thermal maturity in compare to the Sarvak reservoir samples.
[1]افتخارنژاد، ج.، 1359، تفکيک بخشهاي مختلف ايران از نظر ساختماني در ارتباط با حوضههاي رسوبي: نشريه انجمن نفت، صفحات 19-28 .#
[2] حقيپور، ع.، 1358، نقشه زمينشناسي ايران: مقياس250000/1، سازمان زمينشناسي و اکتشافات معدني کشور.#
[3] عبداللهي¬فرد، ا.، ذبيحي، س.، ميري، س.ا.، معتمدي، ح.، 1394، نگرشي جديد در اکتشاف نفت حوضه پيش گود زاگرس (دشت آبادان- جنوب غرب ايران): سومين همايش ملي زمين¬ساخت و زمين¬شناسي ساختاري ايران. #
[4] عربسالاري، س.، 1392، ارزيابي خواص مخزني سازند فهليان در ميادين واقع در دشت¬آبادان (دارخوين و جفير): پايا¬ن¬نامه کارشناسي ارشد، دانشگاه آزاد اسلامي واحد دماوند، 181 صفحه.#
[5]كمالي، م.ر.، معمارياني، م.، جعفري درگاهي، ه.، 1390، مطالعه ويژگيهاي ژئوشيميايي هيدروكربنهاي مخازن ايلام و سروك در ميادين مارون و كوپال: مجله پژوهش نفت، شماره 66، صفحات 23-33.#
[6] مطيعي، ه.، 1372، زمين¬شناسي ايران- زمين¬شناسي نفت زاگرس: سازمان زمين¬شناسي و اکتشافات معدني کشور، 572 صفحه#
[7] مرادي، ه.، عليزاده، ب.، 1393، بررسي بلوغ حرارتي سازند کژدمي با استفاده از پارامترهاي ژئوشيميايي مولکولي در ميدان نفتي يادآوران: مجله يافتههاي نوين زمينشناسي کاربردي، جلد 16، صفحات 57-47. #
[8] ANDRUSEVICH, V. E., ENGEL, M. H., and ZUMBERGE, J. E., 2000, Effects of paleolatitude on stable carbon carbon isotope composition of crude oils: Geology, 28, 847-850.#
[9] ASADI MEHMANDOUSTI, E., ADABI, M. H., BOWDEN, S., and ALIZADEH, B., 2015, Geochemical Investigation, Oil-Oil and Oil-Sourcerock Correlation in the Dezful Embyment, Marun Oilfield, Zagros, Iran: Marin and Petroleum Geology, 68, 648-663.#
[10] ALIZADEH, B., SAADATI, H., RASHIDI, M., and KOBRAEI, M., 2016, Geochemical investigation of oils from Cretaceous to Eocene Sedimentary sequences of the Abadan Plain, Southwest Iran: Marin and Petroleum Geology, 73, 609-619.#
[11] ALIZADEH, B., ADABI, M. H., TEZHEH, F., 2007, Oil-Oil Correlation of the Asmari and Bangestan Reservoirs Using Gas Chromatography and Stable Isotopes in Marun Oilfield, SW Iran: Science & Technology, 31, 241-253.#
[12] BORDENAVE, M. L., 1993, Applied Petroleum Geochemistry: Editions technip, Paris, 524.#
[13] BOURBONNIERE, R. A., and MEYERS, P. A., 1996, Sedimentry geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie: Limnology and Oceanography, 41, 352-359.#
[14] BRAY, E. E., and EVANS, E. D., 1961, Distribution of n-paraffins as a clue to recognition of source beds: Geochimca et Cosmochimica Act, 22, 2-15. #
[15] CONNAN, J. and CASSOU, A. M., 1980, Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels: Geochimica et Cosmochimica Act, 44, 1-23.#
[16] DONG, T., HE, S., LIU, G., HOU, Y., and HARRIS, N. B., 2015, Geochemistry and correlation of crude oils from reservoirs and source rocks in southern Biyang Sag, Nanxiang Basin, China: Organic Geochemistry, 80, 18-34. #
[17] HUNT, J. M., 1996, Petroleum Geochemistry and Geology: 2nd Edition. W.H. Freeman and Company, New York. 743.#
[18] HUGHES, W. B., HOLBA, A. G., and DZOU, L. I. P., 1995, the ratios of dibenzothiophene to phenanthrene and pristine to phytane as indicators of depositional environment and lithology of petroleum source rocks: Geochimica et Cosmochimica Act, 59, 3581-3598.#
[19] KAUFMAN, R. L., AHMED, A. S., and ELSINGER, R. J., 1990, Gas chromatography as a development and production tools for fingerprinting oils from individual reservoirs applications in the Gulf of Mexico: In: GCSSEPM Foundation Ninth Annual Research Conference Proceedings, 263-282.#
[20] LARTER, S., KOOPMANS, M. P., HEAD, I., APLIN, A., LI, M., WILHELMS, A., TELNAES, N., BOWEN, M., ZHANG, C., TIESHEN, W., and YIXIAN, Y., 2000, Biodegradation rates assessed geologically in a heavy oilfield –implications for a deep, slow (Largo) biosphere: Abstract 120, GeoCanada 2000-The Millennium Geoscience Summit, Calgary, 4.#
[21] MACKENZIE, A. S., HOFFMANN, C. F., and MAXWELL, J. R., 1981, Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-III, Changes in aromatic steroid hydrocarbons: Geochimica et Cosmochimica Act, 45, 1345-1355.#
[22] MASHHADI, Z. S., and RABBANI, A. R., 2015, Organic geochemistry of crude oils and Cretaceous source rocks in the Iranian sector of the Persian Gulf: An oil–oil and oil–source rock correlation study: Coal Geology, 146, 118-144.#
[23] MOLDOWAN, J. M., SEIFERT, W. K., and GALLEGOS, E. J., 1985, Relationship between petroleum composition and depositional environment of petroleum source rocks: American Association of Petroleum Geologists Bulletin, 69, 1255-1268.#
[24] MOLDOWAN, J. M., SUNDARAMAN, P., and SCHOELL, M., 1986, Sensitivity of biomarker properties to depositional environment and/ or source input in the Lower Toarcian of S.W. Germany: Organic Geochemistry, 10, 915-926.#
[25] OURISSON, G., ALBRECHT, P., and ROHMER, M., 1984, Predictive microbial biochemistry from molecular fossils to prokaryotic membranes: Trends Biochemistry Sciences, 7, 236-239.#
[26] PETERS, K. E., WALTERS, C. C., and MOLDOWAN, J. M., 2005, The Biomarkers Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History, Cambridge University Press, Second Edition, 1155.#
[27] PETERS, K. E., and MOLDOWAN, J. M., 1993, The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments, Prentice-Hall, Englewood Cli.s, New Jersey: Wiley, Chichester, 504-512.#
[28] POWELL, T. G. and MCKIRDY, D. M., 1973, The effect of source material, rock type and diagenesis on the n-alkane content of sediments: Geochimica et Cosmochimica Act, 37, 523-633.#
[29] RABBANI, A. R., 2008, Geochemistry of crude oil samples from the Iranian sector of the Persian Gulf: Petroleum Geology, 31, 303-316. #
[30] SUBROTO, E. A., ALEXANDER, R., and KAGI, R. I., 1991, 30-Norhopanes: their occurrence in sediments and crude oils: Chemical Geology, 93, 179-192. #
[31] TISSOT, B. P., and WELTE, D. H., 1984, Petroleum Formation and Occurrence: 2nd Edition. Springer-Verlag, New York.#
[32] WAPLES, D. W., 1985, Geochemistry in Petroleum Exploration: Reidel Publish. Cy., Dordrecht, 232.#
[33] WANG, G., XUE, Y., WANG, D., SHI, S., GRICE, K., and GREENWOOD, P. F., 2016, Biodegradation and water washing within a series of petroleum reservoirs of the Panyu Oil Field: Organic Geochemistry, 96, 65-76.#
[34] WENGER, L. M., DAVIS, C. L., and ISAKSEN, G. H., 2002, Multiple controls on petroleum biodegradation and impact on oil quality: Society Petroleum Engineers Reservoir Evaluation and Engineering, 5, 375-383.#
[35] ZUMBERGE, J. E., and RAMOS, S., 1996, Classification of crude oils based on genetic origin using multivariate modeling techniques: Presented at the 13th Australian Geological Convention, Canberra, Australia.#