مکان یابی جمع آوری آب باران با استفاده از روش های رگرسیون چند متغیره بر پایه GIS (مطالعه موردی حوزه آبخیز تجره)
محورهای موضوعی : طراحی منظر پایدارمریم آقائی 1 , سیامک دخانی 2 , ابراهیم امیدوار 3
1 - شهرداری کاشان
2 - دانشگاه کاشان
3 - دانشگاه کاشان
کلید واژه: رگرسیون , مکان یابی , جمع آوری آب باران , گام به گام , سیستم اطلاعات جغرافیا,
چکیده مقاله :
كمبود آب در مناطق خشك، بحراني جدي است مهم ترين مرحله در بكارگيري سامانه هاي جمع آوري باران، مكان يابي عرصه هاي مناسب است. در این تحقیق از سه روش مدل رگرسیون چندمتغیره و GIS برای مکانیابی روش جمع آوری آب باران به شیوه درجا و غیر درجا در حوزه آبخیز تجره استفاده شده است. در این مطالعه تاج پوشش، لاشبرگ، سنگ و سنگ ریزه، خاک لخت، CN، بارش، شیب و عمق خاک به عنوان متغیر مستقل و نفوذ در جمع آوری آب باران درجا و دبی حداکثر لحظه ای برای روش جمع آوری آب باران غیر درجا به عنوان متغیر وابسته در نظر گرفته شد. از مدل رگرسیون چند متغیره از روش گام به گام ، روش حذف پس رو، و پیش رو استفاده شده است. و از روش گام به گام استاندارد، روش حذف پسرو ، روش گام به گام در جمع آوری آب باران غیردرجا استفاده شده است. نتایج نهایی با تطبیق نتایج تحقیقات گذشته نشان می دهد در جمع آوری آب باران درجا، روش گام به گام و در بین لایه ها لایه هایCN، خاک، درصد سنگ و سنگ ریزه، و در جمع آوری آب باران غیر درجا روش رگرسیون گام به گام استاندارد و در بین لایه ها درصد لاشبرگ، درصد تاج پوشش، CN، شیب، درصد سنگ و سنگریزه، میزان بارندگی، درصد خاک لخت و عمق خاک در معادله با اهمیت شناخته شده است. در نهایت درجه اهمیت سایت های جمع آوری باران به چهار کلاس بسیارخوب، خوب، متوسط و ضعیف تقسیم شد.
Water scarcity in arid areas is a serious crisis. The most important step in using rainwater collection systems is to locate suitable areas. In this research, three methods of multivariate regression model and GIS have been used to locate the on-site and off-site rainwater collection method in Tejreh watershed. In this study, canopy, litter, rock and gravel, bare soil, CN, precipitation, slope and soil depth as independent variables and influence on in situ rainwater collection and maximum instantaneous discharge for non-in situ rainwater collection method The title of the dependent variable was considered. The multivariate regression model uses stepwise method, backward removal method, and forward method. And the standard step-by-step method, regression removal method, step-by-step method in collecting rainwater, non-in situ method have been used. The final results by matching the results of previous research show in step rainwater collection, stepwise method and between layers CN, soil, percentage of rock and gravel, and in non-in situ rainwater collection stepwise regression method Standard and among layers the percentage of litter, percentage of canopy, CN, slope, percentage of rocks and pebbles, amount of rainfall, percentage of bare soil and soil depth are known to be important in the equation. Finally, the importance of rain collection sites was divided into four classes: very good, good, medium and poor.
اسلامی، ع و ر. ثقفیان. 1385. نقش عوامل مورفومتری و اقلیمی حوزه در تولید جریان¬های سیلابی (مطالعه موردی حوزه¬های آبخیز غربی خزر). نشریه پژوهش و سازندگی در منابع طبیعی، 1 (21): 175-139.
قضاوی، ر.، ساداتی نژاد، س.، یزدانی،ی و ع. ولی.1394. شناسایی و طبقه بندی سازه های مناسب شارژ و برداشت آب با استفاده از روش GIS جغرافیای طبیعی، (26): 96-85.
دخانی، س.، 1392. مکان یابی جمع آوری آب باران بر پایه سامانه اطلاعات جغرافیایی (GIS) در مناطق غیرخشک و نیمه مرطوب ایران مرکزی (مطالعه موردی حوزه آبخیز استان اصفهان)، پایان نامه دکتری، دانشکده کشاورزی و منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.ص 159.
رضایی، ع و م. سلطانی. 1382. تحلیل رگرسیون کاربردی. انتشارات دانشگاه صنعتی اصفهان.
صادقی، ح.، مرادی، ح.، مزین، م و م. وفاخواه. 1384. کارایی روش¬های مختلف تجزیه و تحلیل آماری در مدل سازی بارش رواناب (مطالعه موردی حوزه کسیلیان). نشریه علوم کشاورزی و منابع طبیعی، 12 (3:( 89-81.
طهماسبی، رمضان، رجبی ثانی، رضا. (1385). جمعآوری آب باران در عرصه های طبیعی راهحلی برای رفع کم آبی در مناطق خشک و نیمه خشک. نشریه جغرافیا و توسعه،4 (7): 42-23.
Ammar, A., Riksen, M., Ouessar, M., Ritsema, C., 2016. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: a review.
Int. Soil Water Conserv. Res. 4 (2), 108–120. Ammar, A., Riksen, M., Ouessar, M., Ritsema, C., 2016. Identification of suitable sites for rainwater harvesting structures
in arid and semi-arid regions: a review. Int. Soil Water Conserv. Res. 4 (2), 108–120. Adham, A., Riksen, M., Ouessar, M., Ritsema, C., Ammar, A., Riksen, M., Ouessar, M., Ritsema, C., 2016. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions&58; A review. Int. Soil Water Conserv. Res. 4:108–120.
Adamowski, J. (2015). Rainwater harvesting for the management of agricultural droughts in arid and semiarid regions. Paddy and Water Environment, 14(1), 231–246.
Al-Daghastani, H.S., 2010. Water harvesting search in Nineah Governorate using remote sensing data. Iraqi J. Desert Stud. 2: 1–15.
Baguma, D., Loiskandl, W., Jung, H., 2010. Water management, rainwater harvesting and predictive variables in rural households. Water Resour. Manag. 24: 3333–3348.
Basinger, M., Montalto, F., Lall, U., 2010. A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator. J. Hydrol. 392: 105–118.
Dabiri, D., Alipor, A., Azad, B., Fatahi, A., 2016. Site Selection of In-situ and Ex-situ Methods of Rain Water Harvesting In the Arid Regions of Iran. Volume: 03 Issue: 04:270–276.
De Winnaar, G., Jewitt, G.P.W., Horan, M., Winnaar, G. De, Jewitt, G.P.W., Horan, M., 2007. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Phys. Chem. Earth, Parts A/B/C 32: 1058–1067.
Durbude, D.G., Venkatesh, B., 2004. Site suitability analysis for soil and water conservation structures. J. Indian Soc. Remote Sens. 32: 399–405.
Durga Rao, K.H. V, Bhaumik, M.K., 2003. Spatial expert support system in selecting suitable sites for water harvesting structures—a case study of song watershed, Uttaranchal, India. Geocarto Int. 18, 43–50.
El-Awar, F. A., Makke, M. K., Zurayk, R. A., & Mohtar, R. H. (2000). A spatial hierarchical methodology for water harvesting in dry lands. Applied Engineering in Agriculture, 16(4), 395–404.
Fewkes, A., 2000. Modelling the performance of rainwater collection systems: towards a generalised approach. Urban water 1, 323–333.
Guo, Y., Baetz, B.W., Engineering, H., 2007. Sizing of rainwater storage units for green building applications. J. Hydrol. Eng. 12, 197–205.
Helmreich, B.Ã., Horn, H., Coulombwall, A., 2009. Opportunities in rainwater harvesting. Desalination 248, 118–124.
Jha, M.K., Chowdary, V.M., Kulkarni, Y., Mal, B.C., 2014. Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis. Resour. Conserv. Recycl. 83, 96–111.
Jasrotia, A. S., Majhi, A., & Singh, S. (2009). Water balance approach for rainwater harvesting using remote sensing and GIS techniques, Jammu Himalaya, India. Water Resources Management, 23(14), 3035–3055
Kahinda, J.M., Lillie, E.S.B., Taigbenu, A.E., Taute, M., Boroto, R.J., 2008. Developing suitability maps for rainwater harvesting in South Africa. Phys. Chem. Earth, Parts A/B/C 33, 788–799.
Kadam, A. K., Kale, S. S., Pande, N. N., et al. (2012). Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of Western India, using SCS-CN method. Water Resources Management, 26(9), 2537–2554.
Mahmoud, S.H., Alazba, A.A., 2015. The potential of in situ rainwater harvesting in arid regions: developing a methodology to identify suitable areas using GIS-based decision support system. Arab. J. Geosci. 8, 5167–5179.
Makhamreh, Z., 2011. Using remote sensing approach and surface landscape conditions for optimization of watershed management in Mediterranean regions. Phys. Chem. Earth, Parts A/B/C 36, 213–220.
Mitchell, V.G., 2007. How important is the selection of computational analysis method to the accuracy of rainwater tank behaviour modelling? Hydrol. Process. 21, 2850–2861.
Mahmoud, S. H., & Alazba, A. A. (2016). Delineation of potential sites for rainwater harvesting structures using a GIS-based decision support system. Hydrology Research, 46(4), 591–606.
Napoli, M., Cecchi, S., Orlandini, S., & Zanchi, C. A. (2014). Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy. Agricultural Water Management, 141, 55–65.
Palla, A., Gnecco, I., Lanza, L.G., Barbera, P. La, La Barbera, P., 2012. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycl. 62, 71–80.
Ward, S., Memon, F.A., Butler, D., 2010. Rainwater harvesting: model-based design evaluation. Water Sci. Technol. 61, 85–96.
Waterfall, P.H., 2006. Harvesting rainwater for landscape use, 2nd ed. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ).1-60
Weerasinghe, H., Schneider, U.A., Loew, A., 2011. Water harvest-and storage-location assessment model using GIS and remote sensing. Hydrol. Earth Syst. Sci. Discuss. 3353–3381.
Wei, H., Li, J.-L., Liang, T.-G., 2005. Study on the estimation of precipitation resources for rainwater harvesting agriculture in semi-arid land of China. Agric. Water Manag. 71, 33–45. Ammar, A., Riksen, M., Ouessar, M., Ritsema, C., 2016. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: a review. Int. Soil Water Conserv. Res. 4 (2), 108–120.
Adham, A., Riksen, M., Ouessar, M., Ritsema, C., Ammar, A., Riksen, M., Ouessar, M., Ritsema, C., 2016. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions&58; A review. Int. Soil Water Conserv. Res. 4:108–120.
Adamowski, J. (2015). Rainwater harvesting for the management of agricultural droughts in arid and semiarid regions. Paddy and Water Environment, 14(1), 231–246.
Al-Daghastani, H.S., 2010. Water harvesting search in Nineah Governorate using remote sensing data. Iraqi J. Desert Stud. 2: 1–15.
Baguma, D., Loiskandl, W., Jung, H., 2010. Water management, rainwater harvesting and predictive variables in rural households. Water Resour. Manag. 24: 3333–3348.
Basinger, M., Montalto, F., Lall, U., 2010. A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator. J. Hydrol. 392: 105–118.
Dabiri, D., Alipor, A., Azad, B., Fatahi, A., 2016. Site Selection of In-situ and Ex-situ Methods of Rain Water Harvesting In the Arid Regions of Iran. Volume: 03 Issue: 04:270–276.
De Winnaar, G., Jewitt, G.P.W., Horan, M., Winnaar, G. De, Jewitt, G.P.W., Horan, M., 2007. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Phys. Chem. Earth, Parts A/B/C 32: 1058–1067.
Durbude, D.G., Venkatesh, B., 2004. Site suitability analysis for soil and water conservation structures. J. Indian Soc. Remote Sens. 32: 399–405.
Durga Rao, K.H. V, Bhaumik, M.K., 2003. Spatial expert support system in selecting suitable sites for water harvesting structures—a case study of song watershed, Uttaranchal, India. Geocarto Int. 18, 43–50.
El-Awar, F. A., Makke, M. K., Zurayk, R. A., & Mohtar, R. H. (2000). A spatial hierarchical methodology for water harvesting in dry lands. Applied Engineering in Agriculture, 16(4), 395–404.
Fewkes, A., 2000. Modelling the performance of rainwater collection systems: towards a generalised approach. Urban water 1, 323–333.
Guo, Y., Baetz, B.W., Engineering, H., 2007. Sizing of rainwater storage units for green building applications. J. Hydrol. Eng. 12, 197–205.
Helmreich, B.Ã., Horn, H., Coulombwall, A., 2009. Opportunities in rainwater harvesting. Desalination 248, 118–124.
Jha, M.K., Chowdary, V.M., Kulkarni, Y., Mal, B.C., 2014. Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis. Resour. Conserv. Recycl. 83, 96–111.
Jasrotia, A. S., Majhi, A., & Singh, S. (2009). Water balance approach for rainwater harvesting using remote sensing and GIS techniques, Jammu Himalaya, India. Water Resources Management, 23(14), 3035–3055
Kahinda, J.M., Lillie, E.S.B., Taigbenu, A.E., Taute, M., Boroto, R.J., 2008. Developing suitability maps for rainwater harvesting in South Africa. Phys. Chem. Earth, Parts A/B/C 33, 788–799.
Kadam, A. K., Kale, S. S., Pande, N. N., et al. (2012). Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of Western India, using SCS-CN method. Water Resources Management, 26(9), 2537–2554.
Mahmoud, S.H., Alazba, A.A., 2015. The potential of in situ rainwater harvesting in arid regions: developing a methodology to identify suitable areas using GIS-based decision support system. Arab. J. Geosci. 8, 5167–5179.
Makhamreh, Z., 2011. Using remote sensing approach and surface landscape conditions for optimization of watershed management in Mediterranean regions. Phys. Chem. Earth, Parts A/B/C 36, 213–220.
Mitchell, V.G., 2007. How important is the selection of computational analysis method to the accuracy of rainwater tank behaviour modelling? Hydrol. Process. 21, 2850–2861.
Mahmoud, S. H., & Alazba, A. A. (2016). Delineation of potential sites for rainwater harvesting structures using a GIS-based decision support system. Hydrology Research, 46(4), 591–606.
Napoli, M., Cecchi, S., Orlandini, S., & Zanchi, C. A. (2014). Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy. Agricultural Water Management, 141, 55–65.
Palla, A., Gnecco, I., Lanza, L.G., Barbera, P. La, La Barbera, P., 2012. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycl. 62, 71–80.
Ward, S., Memon, F.A., Butler, D., 2010. Rainwater harvesting: model-based design evaluation. Water Sci. Technol. 61, 85–96.
Waterfall, P.H., 2006. Harvesting rainwater for landscape use, 2nd ed. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ).1-60
Weerasinghe, H., Schneider, U.A., Loew, A., 2011. Water harvest-and storage-location assessment model using GIS and remote sensing. Hydrol. Earth Syst. Sci. Discuss. 3353–3381.
Wei, H., Li, J.-L., Liang, T.-G., 2005. Study on the estimation of precipitation resources for rainwater harvesting agriculture in semi-arid land of China. Agric. Water Manag. 71, 33–45.
Winnaar, G., Jewitt, G. P. W., & Horan, M. (2007). A GIS-based approach for identifying potential runoff
harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth, 34(15–18), 767–775.
Winnaar, G., Jewitt, G. P. W., & Horan, M. (2007). A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth, 34(15–18), 767–775. Adham, A., Riksen, M., Ouessar, M., Ritsema, C., Ammar, A., Riksen, M., Ouessar, M., Ritsema, C., 2016. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions&58; A review. Int. Soil Water Conserv. Res. 4:108–120. Adamowski, J. (2015). Rainwater harvesting for the management of agricultural droughts in arid and semiarid regions. Paddy and Water Environment, 14(1), 231–246. Al-Daghastani, H.S., 2010. Water harvesting search in Nineah Governorate using remote sensing data. Iraqi J. Desert Stud. 2: 1–15. Baguma, D., Loiskandl, W., Jung, H., 2010. Water management, rainwater harvesting and predictive variables in rural households. Water Resour. Manag. 24: 3333–3348. Basinger, M., Montalto, F., Lall, U., 2010. A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator. J. Hydrol. 392: 105–118. Dabiri, D., Alipor, A., Azad, B., Fatahi, A., 2016. Site Selection of In-situ and Ex-situ Methods of Rain Water Harvesting In the Arid Regions of Iran. Volume: 03 Issue: 04:270–276. De Winnaar, G., Jewitt, G.P.W., Horan, M., Winnaar, G. De, Jewitt, G.P.W., Horan, M., 2007. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Phys. Chem. Earth, Parts A/B/C 32: 1058–1067. Durbude, D.G., Venkatesh, B., 2004. Site suitability analysis for soil and water conservation structures. J. Indian Soc. Remote Sens. 32: 399–405. Durga Rao, K.H. V, Bhaumik, M.K., 2003. Spatial expert support system in selecting suitable sites for water harvesting structures—a case study of song watershed, Uttaranchal, India. Geocarto Int. 18, 43–50. El-Awar, F. A., Makke, M. K., Zurayk, R. A., & Mohtar, R. H. (2000). A spatial hierarchical methodology for water harvesting in dry lands. Applied Engineering in Agriculture, 16(4), 395–404. Fewkes, A., 2000. Modelling the performance of rainwater collection systems: towards a generalised approach. Urban water 1, 323–333. Guo, Y., Baetz, B.W., Engineering, H., 2007. Sizing of rainwater storage units for green building applications. J. Hydrol. Eng. 12, 197–205. Helmreich, B.Ã., Horn, H., Coulombwall, A., 2009. Opportunities in rainwater harvesting. Desalination 248, 118–124. Jha, M.K., Chowdary, V.M., Kulkarni, Y., Mal, B.C., 2014. Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis. Resour. Conserv. Recycl. 83, 96–111. Jasrotia, A. S., Majhi, A., & Singh, S. (2009). Water balance approach for rainwater harvesting using remote sensing and GIS techniques, Jammu Himalaya, India. Water Resources Management, 23(14), 3035–3055 Kahinda, J.M., Lillie, E.S.B., Taigbenu, A.E., Taute, M., Boroto, R.J., 2008. Developing suitability maps for rainwater harvesting in South Africa. Phys. Chem. Earth, Parts A/B/C 33, 788–799. Kadam, A. K., Kale, S. S., Pande, N. N., et al. (2012). Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of Western India, using SCS-CN method. Water Resources Management, 26(9), 2537–2554. Mahmoud, S.H., Alazba, A.A., 2015. The potential of in situ rainwater harvesting in arid regions: developing a methodology to identify suitable areas using GIS-based decision support system. Arab. J. Geosci. 8, 5167–5179. Makhamreh, Z., 2011. Using remote sensing approach and surface landscape conditions for optimization of watershed management in Mediterranean regions. Phys. Chem. Earth, Parts A/B/C 36, 213–220. Mitchell, V.G., 2007. How important is the selection of computational analysis method to the accuracy of rainwater tank behaviour modelling? Hydrol. Process. 21, 2850–2861. Mahmoud, S. H., & Alazba, A. A. (2016). Delineation of potential sites for rainwater harvesting structures using a GIS-based decision support system. Hydrology Research, 46(4), 591–606. Napoli, M., Cecchi, S., Orlandini, S., & Zanchi, C. A. (2014). Determining potential rainwater harvesting sites using a continuous runoff potential accounting procedure and GIS techniques in central Italy. Agricultural Water Management, 141, 55–65. Palla, A., Gnecco, I., Lanza, L.G., Barbera, P. La, La Barbera, P., 2012. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycl. 62, 71–80. Ward, S., Memon, F.A., Butler, D., 2010. Rainwater harvesting: model-based design evaluation. Water Sci. Technol. 61, 85–96. Waterfall, P.H., 2006. Harvesting rainwater for landscape use, 2nd ed. College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ).1-60 Weerasinghe, H., Schneider, U.A., Loew, A., 2011. Water harvest-and storage-location assessment model using GIS and remote sensing. Hydrol. Earth Syst. Sci. Discuss. 3353–3381. Wei, H., Li, J.-L., Liang, T.-G., 2005. Study on the estimation of precipitation resources for rainwater harvesting agriculture in semi-arid land of China. Agric. Water Manag. 71, 33–45. Winnaar, G., Jewitt, G. P. W., & Horan, M. (2007). A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa. Physics and Chemistry of the Earth, 34(15–18), 767–775.