Implementation of Uplink and Downlink Non-Orthogonal Multiple Access (NOMA) on Zync FPGA Device
محورهای موضوعی : Communication Systems & DevicesAhmed Belhani 1 , Hichem Semira 2 , Rania Kheddara 3 , Ghada Hassis 4
1 - Laboratoire Satellites, Intelligence Artificielle, Cryptographie, Internet des Objets « LSIACIO», Constantine 1 University, Algeria
2 - Electronics and New Technologies Laboratory (ENT), University of Oum El Bouaghi, Algeria
3 - Laboratoire Satellites, Intelligence Artificielle, Cryptographie, Internet des Objets « LSIACIO», Constantine 1 University, Algeria
4 - Department of Electronics , Constantine 1 University, Algeria.
کلید واژه: Non-Orthogonal Multiple Access (NOMA), Successive Interference Cancelation (SIC), Multi-use Detection, Bit Error Rate (BER), QPSK, BPSK, Xilinx System Generator (XSG).,
چکیده مقاله :
The non-orthogonal access schemes are one of the multiple access techniques that are candidates to become an access technique for the next generation access radio. Power-domain non-orthogonal multiple-access (NOMA) is among these promising technologies. Improving the network capacity by providing massive connectivity through sharing the same spectral resources is the main advantage that this technique offers. The NOMA technique consists of exploiting the power domain which multiplex multiple users on the same resources applying a superposition coding then separating the multiplexed users at the receiver side. Due to the non-orthogonality access technique, the main disadvantage of NOMA is the presence of interferences between users. That is why this scheme is based on a successive interference cancelation (SIC) detector that separates the multiplexed signals at the receiver. In this paper, an embedded system is considered for designing and implementation of the power-NOMA For two users. The implementation is realized by employing a Zynq FPGA (Field programmable gate array) device through the Zybo-Z7 board using MATLAB/Simulink environment and Xilinx System Generator. The features offered by this device, hemps to consider the design of an uplink and a downlink scenario over Rayleigh fading channel in additive white Gaussian noise (AWGN) environment.
The non-orthogonal access schemes are one of the multiple access techniques that are candidates to become an access technique for the next generation access radio. Power-domain non-orthogonal multiple-access (NOMA) is among these promising technologies. Improving the network capacity by providing massive connectivity through sharing the same spectral resources is the main advantage that this technique offers. The NOMA technique consists of exploiting the power domain which multiplex multiple users on the same resources applying a superposition coding then separating the multiplexed users at the receiver side. Due to the non-orthogonality access technique, the main disadvantage of NOMA is the presence of interferences between users. That is why this scheme is based on a successive interference cancelation (SIC) detector that separates the multiplexed signals at the receiver. In this paper, an embedded system is considered for designing and implementation of the power-NOMA For two users. The implementation is realized by employing a Zynq FPGA (Field programmable gate array) device through the Zybo-Z7 board using MATLAB/Simulink environment and Xilinx System Generator. The features offered by this device, hemps to consider the design of an uplink and a downlink scenario over Rayleigh fading channel in additive white Gaussian noise (AWGN) environment.
[1] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, et Z. Wang, « Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends », IEEE Commun. Mag., vol. 53, no 9, p. 74‑81, sept. 2015.
[2] M. Moltafet, N. Mokari, M. R. Javan, H. Saeedi, et H. Pishro-Nik, « A New Multiple Access Technique for 5G: Power Domain Sparse Code Multiple Access (PSMA) », IEEE Access, vol. 6, p. 747‑759, 2018.
[3] X. Wei et al., « Software Defined Radio Implementation of a Non-Orthogonal Multiple Access System Towards 5G », IEEE Access, vol. 4, p. 9604‑9613, 2016.
[4] Z. Ding et al., « Application of Non-Orthogonal Multiple Access in LTE and 5G Networks », IEEE Commun. Mag., vol. 55, no 2, p. 185‑191, févr. 2017.
[5] M. Vaezi, Z. Ding, et H. V. Poor, Éd., Multiple Access Techniques for 5G Wireless Networks and Beyond. Cham: Springer International Publishing, 2019.
[6] A. E. Mostafa, Y. Zhou, et V. W. S. Wong, « Connection Density Maximization of Narrowband IoT Systems With NOMA », IEEE Trans. Wireless Commun., vol. 18, no 10, p. 4708‑4722, oct. 2019.
[7] Y. Yuan et al., « NOMA for Next-Generation Massive IoT: Performance Potential and Technology Directions », IEEE Commun. Mag., vol. 59, no 7, p. 115‑121, juill. 2021.
[8] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, et S. J. Johnson, « Grant-Free Non-Orthogonal Multiple Access for IoT: A Survey », IEEE Commun. Surv. Tutorials, vol. 22, no 3, p. 1805‑1838, 2020.
[9] F. A. Khales et G. A. Hodtani, « An evaluation of the coverage region for downlink Non-Orthogonal Multiple Access (NOMA) based on Power Allocation Factor », in 2017 Iran Workshop on Communication and Information Theory (IWCIT), Tehran, Iran, mai 2017, p. 1‑5.
[10] Q. C. Li, H. Niu, A. T. Papathanassiou, et G. Wu, « 5G Network Capacity: Key Elements and Technologies », IEEE Veh. Technol. Mag., vol. 9, no 1, p. 71‑78, mars 2014.
[11] X. Liang, X. Gong, Y. Wu, D. W. K. Ng, et T. Hong, « Analysis of Outage Probabilities for Cooperative NOMA Users with Imperfect CSI », in 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, déc. 2018, p. 1617‑1623.
[12] A. Agarwal, R. Chaurasiya, S. Rai, et A. K. Jagannatham, « Outage Probability Analysis for NOMA Downlink and Uplink Communication Systems With Generalized Fading Channels », IEEE Access, vol. 8, p. 220461‑220481, 2020.
[13] N. Tutunchi, A. Haghbin, et B. Mahboobi, « Complexity Reduction in Massive-MIMO-NOMA SIC Receiver in Presence of Imperfect CSI », Journal of Information Systems and Telecommunication (JIST), vol. 2, no 30, p. 113, août 2020.
[14] F. Kara et H. Kaya, « BER performances of downlink and uplink NOMA in the presence of SIC errors over fading channels », IET Communications, vol. 12, no 15, p. 1834‑1844, sept. 2018.
[15] C. A. Ramos-Arregu’n et al., « FPGA Open Architecture Design for a VGA Driver », Procedia Technology, vol. 3, p. 324‑333, 2012.
[16] « Zybo Z7 Reference Manual - Digilent Reference ». accessed on july 04, 2021. [Online]. available on: https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual.
[17] T. Tami, T. Messaoudene, A. Ferdjouni, et O. Benzineb, « Chaos secure communication’ implementation in FPGA », in 2018 International Conference on Applied Smart Systems (ICASS), Medea, Algeria, nov. 2018, p. 1‑6.
[18] W. Tang, S. Yang, et X. Li, « Implementation of Space-time Coding and Decoding Algorithms for MIMO Communication System Based on DSP and FPGA », in 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, sept. 2019, p. 1‑5.
[19] H. Sreenath et G. Narayanan, « FPGA Implementation of Pseudo Chaos-signal Generator for Secure Communication Systems », in 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, sept. 2018, p. 804‑807.
[20] Q. Yingchao et Y. Feng, « Design and Implementation of Differential Frequency Hopping Communication System Based on FPGA », in 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, déc. 2018, p. 1006‑1010.
[21] M. A. Ahmed, K. F. Mahmmod, et M. M. Azeez, « On the performance of non-orthogonal multiple access (NOMA) using FPGA », IJECE, vol. 10, no 2, p. 2151, avr. 2020.
[22] M. Mekhfioui, A. Satif, O. Mouhib, R. Elgouri, A. Hadjoudja, et L. Hlou, « Hardware Implementation of Blind Source Separation Algorithm Using ZYBO Z7& Xilinx System Generator », in 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, Morocco, juin 2020, p. 1‑5.
[23] T. Assaf, A. Al-Dweik, M. S. E. Moursi, H. Zeineldin, et M. Al-Jarrah, « NOMA Receiver Design for Delay-Sensitive Systems », IEEE Systems Journal, vol. 15, no 4, p. 5606‑5617.
[24] H. Semira et F. Kara, « Error Performance of Uplink SIMO-NOMA with Joint Maximum-Likelihood and Adaptive M-PSK », in 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Bucharest, Romania, mai 2021, p. 1‑6.
[25] H. Semira, F. Kara, H. Kaya, et H. Yanikomeroglu, « Multi-User Joint Maximum-Likelihood Detection in Uplink NOMA-IoT Networks: Removing the Error Floor », IEEE Wireless Commun. Lett., vol. 10, no 11, p. 2459‑2463, nov. 2021.
[26] « Digital Modulation in FPGAs Xilinx using system generator (ASK, BPSK, FSK, OOK, QPSK) - File Exchange - MATLAB Central ». accessed on july 04, 2021. [online]. available on: https://www.mathworks.com/matlabcentral/fileexchange/14650-digital-modulation-in-fpgas-xilinx-using-system-generator-ask-bpsk-fsk-ook-qpsk?s_tid=FX_rc3_behav.
[27] H. CJ, S. D. Hanwate, et A. S. Mali, « Hardware Implementation of BPSK System on Virtex2-Pro FPGA Using Xilinx System Generator », IRJES, vol2, issue1,p 18-24, jan 2013.