تکرار محرک و ادراک زمان: آماده سازیِ تکرار یا سرکوبِ تکرار؟
محورهای موضوعی :حسن صبوری مقدم 1 , محمدعلی نظری 2 , رضا خسرو آبادی 3 , حسین سپاسی مقدم 4
1 -
2 - دانشگاه تبریز
3 -
4 -
کلید واژه: مکانیسم های ادراک زمان اثر آدبال آماده سازی تکرارسرکوب تکرارتقویت تکرار,
چکیده مقاله :
آماده سازیِ تکرار و سرکوبِ تکرار دو پدیده ای هستند که به واسطة مواجهة تکراری با یک محرک به وجود می آیند. در آماده سازیِ تکرار بر بهبود عملکرد تأکید میشود ولی در مقابل، در سرکوبِ تکرار بر افزایش خطا در برآورد زمان، تأکید می گردد. در پژوهش حاضر، امکان وقوع همزمان این دو مورد بررسی قرار گرفت. 12 آزمودنی بزرگسال در یک تکلیف آدبال زمان شـرکت کردند که در آن تعداد تکرار محرک های استاندارد در مقایسه با محرک هدف، دستکاری می شد. تمام تغییرات مربوط به عملکرد رفتاری و همچنین ادراک زمان در آنان به کمک روش تحلیل واریانس با اندازه های مکرر تحلیل شد. این تحلیل نشان داد که ارائه مکرر محرکهای زمانی در هر دو سیستم بینایی و شنوایی باعث بهبود عملکرد رفتاری آزمودنی ها (آماده سازی تکرار) میشود. همزمان، تغییرات اندازه های ادراک زمان نیز نشان داد که علی رغم جهت متفاوت در این دو سیستم حسی، محرک آدبال می تواند باعث تحریف زمان گردد هم به شکل انقباض زمان و هم به شکل انبساط زمان. این فرض مطرح گردید که اگرچه آماده سازی تکرار در تکلیف زمان می تواند به واکنش رفتاریِ سریع تر و دقیق تر منجر گردد، ولی افزایش در شاخص تحریف زمان بعد از محرک تکراری، می تواند به تغییر در پراکندگی خطاها مربوط باشد.
Repetition priming and repetition suppression are two phenomena that both are caused by repeated exposure to an identical stimulus. Repetition priming usually is under- lined by improved behavioral performance, whereas in timing, the repetition suppression is accompanied by increasing error in time two estimations. This study investigated the possible simultaneous concurrence of these phenomena. Twelve adult subjects participated in a temporal oddball task in which the repetition of standard stimuli was under experimental manipulation, compard to the target stimulus. Both changes in performance and time representation were analyzed by a repeated measure within group design. Repeated presentations of temporal stimulus either in visual or auditory modalities improved participants behavioral performance (repetition priming). At the same time, data analysis for time representation showed that despite different directions in the modalities, the oddball stimulus was able to distort the time representation, both in time contraction and time expantion. The findings proposed that although the repetition priming can lead to faster and more accurate response, but more time distortions after repeated stimuli can be explained by the shift occured in errors distribution.
Memory and Language, 55(4), 515-533.
Birngruber, T., Schröter, H., & Ulrich, R. (2014). Duration perception of visual and auditory oddball stimuli: Does judgment task modulate the temporal oddball effect? Attention, Perception, & Psychophysics, 76(3), 814-828.
Buonomano, D. V., Bramen, J., & Khodadadifar, M. (2009). Influence of the interstimulus interval on temporal processing and learning: Testing the state-dependent network model. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1865-1873.
Burr, D., Banks, M. S., & Morrone, M. C. (2009). Auditory dominance over vision in the perception of interval duration. Experimental Brain Research, 198(1), 49-57.
Chen, K. M., & Yeh, S. L. (2009). Asymmetric cross-modal effects in time perception. Acta Psychologica, 130(3), 225-234.
Costa‐Faidella, J., Grimm, S., Slabu, L., Díaz‐Santaella, F., & Escera, C. (2011). Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology, 48(6), 774-783.
Cycowicz, Y. M., Friedman, D., & Rothstein, M. (1996). An ERP develop- mental study of repetition priming by auditory novel stimuli. Psycho- physiology, 33(6), 680-690.
Desai, V. R. (2007). The effects of aging and brain damage on time percep- tion. CUREJ-College Undergraduate Research Electronic Journal, University of Pennsylvania, http://repository.upenn.edu/curej/60
Droit-Volet, S., Meck, W. H., & Penney, T. B. (2007). Sensory modality and time perception in children and adults. Behavioural Processes, 74(2), 244-250.
Du, Y., Hu, W., Fang, Z., & Zhang, J. X. (2013). Electrophysiological corre -lates of morphological processing in Chinese compound word recognition. Frontiers in Human Neuroscience, 7, 1-8.
Gabrieli, J. D. (1998). Cognitive neuroscience of human memory. Annual Review of Psychology, 49(1), 87-115.
Gabrieli, J. D., Fleischman, D. A., Keane, M. M., Reminger, S. L., & Morrell, F. (1995). Double dissociation between memory systemsunderlying explicit and implicit memory in the human brain. Psychological Science, 6(2), 76-82.
Gavkare, A. M., Nanaware, N. L., & Surdi, A. D. (2013). Auditory reaction time, visual reaction time and whole body reaction time in athletes. Indian Medical Gazette, 6, 214-219.
George, E., & Coch, D. (2010). Neural and behavioral evidence of working memory differences in musicians and non-musicians. Paper presented at The 17th Annual Meeting of the Cognitive Neuroscience Society, from http:// www.cnsmeeting.org/index.php?page=hillyard_symposium.
Hodinott Hill, I., Thilo, K. V., Cowey, A., & Walsh, V. (2002). Auditory chronostasis: Hanging on the telephone. Current Biology, 12(20), 1779-1781.
Huber, D. E., Clark, T. F., Curran, T., & Winkielman, P. (2008). Effects of repetition priming on recognition memory: Testing a perceptual fluency-disfluency model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6), 1305.
Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12(7), 273-280.
Jacoby, L. L., & Dallas, M. (1981). On the relationship between autobio- graphical memory and perceptual learning. Journal of Experimental Psychology: General, 110(3), 306.
Kemp, B. J. (1973). Reaction time of young and elderly subjects in relation to perceptual deprivation and signal-on versus signal-off conditions. Developmental Psychology, 8(2), 268.
Kristjánsson, Á., & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72(1), 5-18.
Larsson, J., & Smith, A. T. (2012). fMRI repetition suppression: Neuronal adaptation or stimulus expectation? Cerebral Cortex, 22(3), 567-576. doi: 10.1093/cercor/bhr119.
Lawson, A. L., Guo, C., & Jiang, Y. (2007). Age effects on brain activity during repetition priming of targets and distracters. Neuropsychologia, 45(6), 1223-1231.
Lin, C. Y. (2009). Examining the relationship between behavioral repetition priming and fMRI repetition suppression: The University of Arizona.
Logan, G. D. (1990). Repetition priming and automaticity: Common underlying mechanisms? Cognitive Psychology, 22(1), 1-35.
Matell, M. S., & Meck, W. H. (2000). Neuropsychological mechanisms of interval timing behavior. Bioessays, 22(1), 94-103.
Mathalon, D. H. (2010). Beyond the oddball in schizophrenia research: Neurophysiologic studies of memory and language processing. Paper presented at the Psychophysiology.
Matthews, W. J. (2011). Stimulus repetition and the perception of time: The effects of prior exposure on temporal discrimination, judgment, and production. Plos One, 6(5), e19815. doi: 10.1371/journal.pone.0019815.
Matthews, W. J., & Meck, W. H. (2014). Time perception: The bad news and the good. Wiley Interdisciplinary Reviews: Cognitive Science, 5(4), 429-446.
Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307-340.
Mayr, S., Erdfelder, E., Buchner, A., & Faul, F. (2007). A short tutorial of GPower. Tutorials in Quantitative Methods for Psychology, 3(2), 51-59.
McAuliffe, A., & McGann, M. (2016). Sampling participants’ experience in laboratory experiments: Complementary challenges for more complete data collection. Frontiers in Psychology, 7, 674.
Mimura, M., Verfaellie, M., & Milberg, W. P. (1997). Repetition priming in an auditory lexical decision task: Effects of lexical status. Memory & Cognition, 25(6), 819-825.
Mioni, G., Grondin, S., & Stablum, F. (2014). Temporal dysfunction in traumatic brain injury patients: Primary or secondary impairment? Frontiers in Human Neuroscience, 8. 269. doi:10.3389/fnhum.2014.00269
New, J. J., & Scholl, B. J. (2009). Subjective time dilation: spatially local, object-based, or a global visual experience? Journal of Vision, 4.10.1167/9.2.4
Orfanidou, E., Marslen-Wilson, W. D., & Davis, M. H. (2006). Neural response suppression predicts repetition priming of spoken words and pseudowords. Journal of Cognitive Neuroscience, 18(8), 1237-1252.
Pariyadath, V., & Eagleman, D. (2007). The effect of predictability on subjective duration. Plos One, 2(11), e1264. doi:10.1371/journal.pone. 0001264
Pariyadath, V., & Eagleman, D. M. (2012). Subjective duration distortions mirror neural repetition suppression. Plos One, 7(12) Peirce, e49362. doi: 10.1371/journal.pone.0049362.
Peirce, J. W. (2007). PsychoPy-psychophysics software in Python. Journal of Neuroscience Methods, 162(1), 8-13.
Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2(10), 1-8.
Pigeon, S. (2015). Online audio frequency signal generator. Retrieved Febreuary 2015, from http://www.wavtones.com/functiongenerator.php.
Pouthas, V., George, N., Poline, J. B., Pfeuty, M., VandeMoorteele, P. F., Hugueville, L., Renault, B. (2005). Neural network involved in time perception: An fMRI study comparing long and short interval estimation. Human brain Mapping, 25(4), 433-441.
Pütz, P., Ulbrich, P., Churan, J., Fink, M., & Wittmann, M. (2012). Duration discrimination in the context of age, sex, and cognition. Journal of Cognitive Psychology, 24(8), 893-900.
Ranganath, C., & Rainer, G. (2003). Neural mechanisms for detecting and remembering novel events. Nature Reviews Neuroscience, 4(3), 193-202.
Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4(3), 317-323.
Ratcliff, R., Allbritton, D., & McKoon, G. (1997). Bias in auditory priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(1), 143.
Schacter, D. L., & Buckner, R. L. (1998). Priming and the brain. Neuron, 20(2), 185-195.
Schindel, R., Rowlands, J., & Arnold, D. H. (2011). The oddball effect: Perceived duration and predictive coding. Journal of Vision February, (11), 17. doi:10.1167/11.2.17.
Segaert, K., Weber, K., de Lange, F. P., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51(1), 59-66.
Shelton, J., & Kumar, G. P. (2010). Comparison between auditory and visual simple reaction times. Neuroscience & Medicine, 1(01), 30-32.
Spencer, R. M., Karmarkar, U., & Ivry, R. B. (2009). Evaluating dedicated and intrinsic models of temporal encoding by varying context. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1853-1863.
Stauffer, C. C., Haldemann, J., Troche, S. J., & Rammsayer, T. H. (2012). Auditory and visual temporal sensitivity: evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychological Research, 76(1), 20-31.
Toplak, M. E., & Tannock, R. (2005). Time perception: Modality and duration effects in attention deficit/hyperactivity disorder (ADHD). Journal of Ab-normal Child Psychology, 33(5), 639-654.
Tse, P. U., Intriligator, J., Rivest, J., & Cavanagh, P. (2004). Attention and the subjective expansion of time. Perception & Psychophysics, 66(7), 1171-1189.
VanWassenhove, V., Buonomano, D. V., Shimojo, S., & Shams, L. (2008). Distortions of subjective time perception within and across senses. Plos One, 3(1), e1437.
Vul, E. (2010). Sampling in human cognition. Massachusetts Institute of Technology.
Wearden, J. H., Edwards, H., Fakhri, M., & Percival, A. (1998). Why''sounds are judged longer than lights'': Application of a model of the internal clock in humans. The Quarterly Journal of Experimental Psychology: Section B, 51(2), 97-12.
Wittmann, M. (1999). Time perception and temporal processing levels of the brain. Chronobiology International, 16(1), 17-32.
Wittmann, M. (2011). Moments in time. Frontiers in Integrative Neuroscience, 5(66),1-9.
Yarrow, K., & Rothwell, J. C. (2003). Manual chronostasis: Tactile perception precedes physical contact. Current Biology, 13(13), 1134-1139.
Yarrow, K., Whiteley, L., Rothwell, J. C., & Haggard, P. (2006). Spatial consequences of bridging the saccadic gap. Vision Research, 46(4), 545-55.