افزایش شفافیت در نهاننگاری تصاویر با استفاده از الگوریتم ژنتیک و نگاشتهای قابل بازگشت
محورهای موضوعی : مهندسی برق و کامپیوترسعید ترابی تربتی 1 , مرتضی خادمی 2 , عباس ابراهیمی مقدم 3
1 - دانشگاه فردوسی مشهد
2 - دانشگاه فردوسی مشهد
3 - دانشکده مهندسی، دانشگاه فردوسی مشهد
کلید واژه: الگوریتم ژنتیک, تطابق LSB, شفافیت, ظرفیت جایگذاری, نهاننگاری تصویر,
چکیده مقاله :
نهاننگاری تصاویر، رویکرد جایگذاری اطلاعات در تصویر پوشش است. یکی از معیارهای ارزیابی یک روش نهاننگاری تصاویر، توانایی آن در حفظ شفافیت تصویر پوشش است. در واقع، جایگذاری اطلاعات پنهان باید به گونهای باشد که کمترین تغییرات در شفافیت بین تصویر پوشش و تصویر نهاننگاری شده به وجود آید. میزان شفافیت تصویر خروجی به صورت عمده تحت تأثیر روش جایگذاری و میزان اطلاعات پنهان یا همان ظرفیت جایگذاری است. با این موضوع میتوان به عنوان یک مسئله بهینهسازی برخورد کرد و تابع مد نظر برای بهینهسازی را شفافیت تصویر قرار داد. در روش پیشنهادی، تابع PSNR برای بهینهسازی انتخاب شده است. متغیرهای این تابع، نگاشتهای اعمالی روی تصویر پوشش و اطلاعات پنهان و مکان جایگذاری اطلاعات در تصویر پوشش هستند. این متغیرها با ایجاد حالات مختلف جایگذاری، روی PSNR تصویر خروجی تأثیر میگذارند. توسط الگوریتم ژنتیک و استفاده از دو مفهوم جستجوی هدفمند و جستجوی بدون هدف، محل و حالت مناسب برای جایگذاری اطلاعات در کمارزشترین بیتهای تصویر پوشش شناسایی میشوند. در این روش، بازیابی اطلاعات پنهان به صورت کامل و بدون خطا صورت میگیرد. این کار توسط کلید نهایی تولیدشده توسط الگوریتم ژنتیک یا همان کروموزومی که منجر به نهاننگاری شده است، صورت میگیرد. این ویژگی در سیستمهای مدیریتی و شبکههای ابری که برای ذخیرهسازی اطلاعات از نهاننگاری استفاده میکنند، مهم است. نهایتاً روش پیشنهادی مورد آزمایش قرار گرفته و نتایج آن با روشهای دیگر در همین حوزه مقایسه شده است. نتایج حاصل از آزمایشها با معیارهای PSNR و همچنین مقادیر بالاتر از 99/0 در معیار SSIM، افزایش شفافیت در روش ارائهشده نسبت به رقیبان و همچنین روش LSB ساده را نشان میدهند. نتایج به دست آمده از بررسی معیار عینی NIQE و هیستوگرام، تغییرات اندک تصویر نهاننگاری شده را نسبت به تصویر اصلی نشان میدهند. بهبود در نتایج آزمایش به علت استفاده همزمان نگاشت روی اطلاعات پنهان و تصویر پوشش، معرفی نگاشت جدید انتقال ناحیهای و استفاده از دو نوع جهش و ترکیب در ساختار الگوریتم ژنتیک است.
One of the evaluation methods for image steganography is preserving cover image quality and algorithm imperceptibility. Placing hidden information should be done in such a way that there is minimal change in quality between the cover image and the coded image (stego image). The quality of the stego image is mainly influenced by the replacement method and the amount of hidden information or the replacement capacity. This can be treated as an optimization problem and a quality function can be considered for optimization. The variables of this function are the mappings applied to the cover image and the hidden information and location of the information. In the proposed method, by genetic algorithm and using the two concepts of targeted search and aimless search, the appropriate location and state for placement in the least significant bits of the cover image are identified. In this method, hidden information can be extracted completely and without error. This feature is important for management systems and cloud networks that use steganography to store information. Finally, the proposed method is tested and the results are compared with other methods in this field. The proposed method, in addition to maintaining the stego image quality, which is optimized based on PSNR, has also shown good performance in examining histogram and NIQE statistical criteria.
[1] Q. M. Hussein, "New metrics for steganography algorithm quality," International J. of Advanced Science and Technology, vol. 29, no. 2, pp. 2092-2098 2020.
[2] H. Alatawi and C. Narmatha, "The secret image hiding schemes using steganography-survey," in Proc. of the Int. Conf. on Computing and Information Technology, ICCIT-1441, 5 pp., Tabuk, Saudi Arabia, 9-10 Sept. 2020.
[3] S. Baluja, "Hiding images in plain sight: deep steganography," Advances in Neural Information Processing Systems, vol. 30, pp. 2069-2079, 2017.
[4] S. Dhawan and R. Gupta, "Analysis of various data security techniques of steganography: a survey," Information Security J.: A Global Perspective, vol. 30, no. 2, Article ID: 1801911, 2021.
[5] J. Adeboye Ajala, S. Singh, and S. Mukherjee, "Application of steganography technique in cloud computing," in Proc. Int. Conf. on Computational Intelligence and Knowledge Economy, ICCIKE'19, pp. 532-537, Dubai, United Arab Emirates, 10-11 Dec. 2019.
[6] F. Khelifi, T. Brahimi, J. Han, and X. Li, "Secure and privacy-preserving data sharing in the cloud based on lossless image coding," Signal Processing, vol. 148, pp. 91-101, Jul. 2018.
[7] M. Hussain, A. Wahid Abdul Wahab, Y. Idna Bin Idris, A. T. S. Ho, and K. H. Jung, "Image steganography in spatial domain: a survey," Signal Processing: Image Communication, vol. 65, pp. 46-66, Jul. 2018.
[8] K. Bansal, A. Agrawal, and N. Bansal, "A survey on steganography using least significant bit (LSB) embedding approach," in Proc. 4th Int. Conf. on Trends in Electronics and Informatics, ICOEI'20, pp. 64-69, Tirunelveli, India, 15-17 Jun. 2020.
[9] D. R. I. M. Setiadi, "PSNR vs SSIM: imperceptibility quality assessment for image steganography," Multimedia Tools and Applications, vol. 80, pp. 8423-8444, 2021.
[10] M. C. Kasapbaşı and İ. Bayam, "A new improved LSB chaotic image steganography scheme," in Proc. Conf. of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus'22, pp. 2069-2079, Saint Petersburg, Russian Federation, 25-28 Jan. 2022.
[11] M. Chanchal, P. Malathi, and G. Kumar T., "A comprehensive survey on neural network based image data hiding scheme," in Proc. 4th In. Conf. on IoT in Social, Mobile, Analytics and Cloud, I-SMAC'20, pp. 1245-1249, Palladam, India, 7-9 Oct. 2020.
[12] R. Rahim and M. S. Nadeem, "End-to-end trained CNN encode-decoder networks for image steganography," in Proc. of the 15th European Conf. on Computer Vision, ECCV'18, pp. 723-729, Munich, Germany, 8-14 Sept. 2018.
[13] D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li, "A novel image steganography method via deep convolutional generative adversarial networks," IEEE Access, vol. 6, pp. 38303-38314, 2018.
[14] Q. Liu, T. Qiao, M. Xu, and N. Zheng, "Fuzzy localization of steganographic flipped bits via modification map," IEEE Access, vol. 7, pp. 74157-74167, 2019.
[15] Z. Ashraf, M. L. Roy, P. K. Muhuri, and Q. M. Danish Lohani, "A novel image steganography approach based on interval type-2 fuzzy similarity," in Proc. IEEE Int. Conf. on Fuzzy Systems, 8 pp., Rio de Janeiro, Brazil, 8-13 Jul. 2018.
[16] A. K. Hussein, "Genetic algorithm based steganography using adaptive rectangular embedding area," International J. of Mechanical Engineering and Technology, vol. 10, no. 1, pp. 2066-2074, 2019.
[17] E. Ghasemi, J. Shanbehzadeh, and N. Fassihi, "High capacity image steganography using wavelet transform and genetic algorithm," in Proc. of the Int. Multi Conf. of Engineers and Computer Scientists, vol. 1, pp. 495-498, Hong Kong, 16-18 Mar. 2011.
[18] R. Biswas and S. K. Bandyapadhay, "Random selection based GA optimization in 2D-DCT domain color image steganography," Multimed Tools Appl, vol. 79, no. 11-12, pp. 7101-7120, Mar. 2020.
[19] J. Hemanth D., et al., "A modified genetic algorithm for performance improvement of transform based image steganography systems," J. of Intelligent & Fuzzy Systems, vol. 35, no. 1, pp. 197-209, 2018.
[20] A. Khamrui and J. Mandal, "A genetic algorithm based steganography using discrete cosine transformation (GAS DCT)," in Proc. of the 1st Int.l Conf. on Computational Intelligence: Modeling Techniques and Applications, CIMTA’13, vol. 10, pp. 105-110, Kalyani, India, 27-28 Sept. 2013.
[21] R. Wazirali, W. Alasmary, M. M. E. A. Mahmoud, and A. Alhindi, "An optimized steganography hiding capacity and imperceptibly using genetic algorithms," IEEE Access, vol. 7, pp. 133496-133508, 2019.
[22] S. Chaudhary, S. Hiranwal, and C. P. Gupta, " Graph signal processing and tunicate swarm optimization-based image steganography using hybrid chaotic map-based image scrambling," Journal of Discrete Mathematical Sciences and Cryptography, vol. 25, no. 7, pp. 2159-2171, 2022.
[23] L. Yu, Y. Zhao, R. Ni, and T. Li, "Improved adaptive LSB steganography based on chaos and genetic algorithm," EURASIP J. on Advances in Signal Processing, Article ID: 876946, Jun. 2010.
[24] M. Soleimanpour-Moghadam and S. Talebi, "A novel technique for steganography method based on improved genetic algorithm optimization in spatial domain," Iranian J. of Electrical and Electronic Engineering, vol. 9, no. 2, pp. 67-75, Jun. 2013.
[25] R. Latha, R. Premkumar, and S. Anand, "An efficient wavelet transform based steganography technique using chaotic map," in Proc. IEEE Int. Conf. on Current Trends Toward Converging Technologies, 7 pp., Coimbatore, India,1-3 Mar. 2018.
[26] Allan G. Weber, The USC-SIPI Image Database: Version 5, Original release: October 1997, Signal and Image Processing Institute, University of Southern California, Department of Electrical Engineering. http://sipi.usc.edu/database.
[27] J. H. Horng, C. C. Chang, and G. L. Li, "Steganography using quotient value differencing and LSB substitution for AMBTC compressed images," IEEE Access, vol. 8, pp. 129347-129358, 2020.