ارائه مدلی برای تداوم استفاده از یادگیری الکترونیکی در محیطهای کاری (مورد مطالعه: ستاد سازمان امور مالیاتی کشور)
محورهای موضوعی :هانیه شامی زنجانی 1 , مصطفی نیکنامی 2 , نادرقلی قورچیان 3 , امیرحسین محمد داودی 4
1 - دانشگاه آزاد واحد علوم و تحقیقات
2 - دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
3 - دانشگاه آزاد اسلامی، واحد علوم و تحقیقات
4 - دانشگاه آزاد واحد ساوه
کلید واژه: تداوم استفاده از یادگیری الکترونیکی, محیطهای کاری, فراگیران, عوامل موثر, ستاد سازمان امور مالیاتی کشور,
چکیده مقاله :
این پژوهش با هدف ارائه مدلی برای تداوم استفاده از یادگیری الکترونیکی در محیطهای کاری (ستاد سازمان امور مالیاتی کشور) انجام شده است. مطالعه حاضر از نظر هدف کاربردی، از نظر نوع دادهها آمیخته، از نظر نحوه اجرا توصیفی از نوع پیمایشی است. بهمنظور گردآوری دادهها از روش کتابخانهای، مصاحبه نیمهساختاریافته، پرسشنامه محقق ساخته عوامل موثر بر تداوم استفاده شد. روایی صوری پرسشنامه از طریق اجرای آزمایشی، روایی محتوایی از طریق مرور جامع ادبیات و قضاوت خبرگان، و روایی سازه نیز با استفاده از تحلیل عاملی تاییدی و اکتشافی بدست آمد. پایایی پرسشنامه از طریق محاسبه ضریب آلفای کرونباخ 93/0 برآورد شد. تحلیل دادههای کیفی از طریق کدگذاری صورت گرفت. تحلیل دادههای کمی نیز با استفاده از نرمافزار SPSS و LISREL انجام شد. از آمار توصیفی و آمار استنباطی که شامل تحلیل عاملی اکتشافی برای تعیین عوامل و مولفههای مدل و تحلیل عاملی تاییدی با استفاده از تکنیک مدلیابی معادلات ساختاری برای ارائه مدل از طریق نرمافزار LISREL استفاده شده است. یافتهها نشان دادند که از نظر متخصصان کیفیت سیستم، حمایت سازمانی و عملکرد مورد انتظار با فراوانی12، اولویت اول را به ترتیب در عوامل سیستمی، عوامل سازمانی و عوامل فردی دارند. همچنین سن نیز با فروانی 7 در بین عوامل جمعیتشناختی (دموگرافیک) اولویت اول را دارد. سهم «عوامل سیستمی»، «عوامل سازمانی»، «عوامل انسانی» و «عوامل جمعیتشناختی»، برای تداوم استفاده از یادگیری الکترونیکی به ترتیب 48/0، 36/0، 28/0 و 19/0 بود. در نهایت مدلی برای تداوم استفاده از یادگیری الکترونیکی در ستاد سازمان امور مالیاتی کشور بر اساس عوامل موثر و مولفههای آن ارائه گردید.
This research aims to provide a model for the continued use of e-learning in work environments (Headquarters of the State Tax Administration). The present study is a descriptive survey type in terms of the applied purpose, in terms of the type of mixed data. For collecting data, a library method, a semi-structured interview, a researcher-made questionnaire, and factors affecting continuity were used. The formal validity of the questionnaire was obtained through pilot implementation, content validity through comprehensive literature review and judgment of experts, and construct validity using a confirmatory and exploratory factor analysis. The reliability of the questionnaire was estimated to be 0.93 by calculating the Cronbach's alpha coefficient. Qualitative data analysis was done through coding. Quantitative data analysis was performed using SPSS and LISREL software. Descriptive statistics and inferential statistics including exploratory factor analysis to determine the factors and components of the model and the confirmatory factor analysis using the structural equation modeling technique for presenting the model through LISREL software have been used. The findings showed that the quality of the system experts, organizational support and expected performance with frequency 12, have the first priority, respectively, in system factors, organizational factors and individual factors. Also, the age of 7 is among the demographic (demographic) factors of the first priority. The share of "system factors", "organizational factors", "human factors" and "demographic factors" was 48%, 36%, 28% and 19% respectively for continued use of e-learning. Finally, a model for continuing use of e-learning in the headquarters of the State Tax Administration was presented based on its effective factors and its components.
1. Hong J-C, Tai K-H, Hwang M-Y, KuoY-C, Chen J-S Internet cognitive failure relevant to users' satisfaction with content and interface design to reflect continuance intention to use a government e-learning system, Computers in Human Behavior 66, 353-362.
2. Chen H, Kao C. Empirical validation of the importance of employees’ learning motivation for workplace e-learning in Taiwanese organizations. Australasian Journal of Educational Technology.2012; 28(4). 580-598.
3. Chang C-T, SU C-R , Hajiyev . Examining the students'behavioral intention to use e-learning in Azerbaijan? The General Extended Technology Acceptance Model for E-learning approach. Computers & Education, doi: 10.1016/j.compedu.2017.04.010.
4. Abdullah F, Ward R Developing a general extended technology acceptance model for E-learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238-256. http://dx.doi.org/10.1016/j.chb.2015.11.036.
5. Caudill J.G. Designing Workplace E-Learning. Bulletin of the IEEE Technical Committee on Learning Technology, 2013;15(4), 19-21.
6. Cheng B, Wang M, Moormann J, Olaniran B, Chen N-S. (2012). The effects of organizational learning environment factors on e-learning acceptance, Computers & Education Journal, 58, 885–899.
7. Lee H, Hsieh Y-C, Ma C-Y. A model of organizational employees e-learning systems acceptance.Knowledge-Based Systems, 2011;24(3), 355–366.
8. Karaali D, Gumussoy C. A, Calisir F. Factors affecting the intention to use a web-based learning system among blue-collar workers in the automotive industry. Computers in Human Behavior,2011; 27(1), 343-354.
9. Fleischmann M, Amirpur M, Grupp T, Benlian A, Hess T. The role of software updates in information systems continuance — An experimental study from a user perspective. Decision Support Systems,2016;83,83–96.
10. Rust R. T , Zahorik A. J. Customer satisfaction, customer retention, and market share. Journal of Retailing. 1993;69, 193-215.
11. Furneaux B,Wade M.. An exploration of organizational level information systems discontinuance intentions, MIS Q,2011; 35, 573-598.
12. David O, Salleh M, Iahad N.. The impact of e-learning in workplace: focus on organizations and healthcare environments. International Arab Journal of e-Technology, 2012;2(4), 203-208.
13. Khoo H. M, Robey D. Deciding to upgrade packaged software: a comparative case study of motives, contingencies and dependencies. European Journal of Information Systems, 2007; 16, 555–567.
14. Zhang M, Liu Y. Users’ continuance intention of virtual learning community services: the moderating role of usage experience, Interactive Learning Environments, 2016; 10.1080/10494820.2016.117224.
15. Cho I. The Nature and Determinants of Intranet Discontinuance after Mandatory Adoption. Asian Communication Research, 8.45-83. Current State and Future Directions,". Asia Pacific Journal of Information Systems.2011; 21.
16. Ghasemi, J. 1389. Modeling the Structural Equation in Social Research with the Application of Amos Graphics, Tehran, Sociology Publishers.
17. Chen H. Linking employees’e-learning system use to their overall job outcomes: An empirical study based on the IS success model. Computers & Education, 2010; 55(4),1628-1639.
18. Van Rooj S. Instructional design and project management: complimentary or divergent? Educational Technology Research and Development. 2011; 59(1),139-158.
19. Lin C-A."An Interactive Communication Technology Adoption Model" Communication Theory, 2003; 13, 345‐365.
20. Lin W-S, Wang C-H. Antecedences to continued intentions of adopting e-learning system in blended learning instruction: A contingency framework based on models of information system success and task-technology fit. Computers & Education, 2012; 58(1), 88–99.
21. Seraji F, Attar M, Naderi, Asgari. Virtual University curriculum design. Quarterly Studies of Curriculum, 1386; 2 (6), 79-118.
22. Najafi M, Maldives of the Welsh Z. E-learning experiences in Iran and the world. Tadbir Monthly,1386; 187. 29-24.
23. Davis F.D. "Perceived usefulness, perceived ease of use, and user acceptance of information technology", MIS Quarterly, 1989; 13, 3, 319-340.
24. Venkatesh V, Morris M.G, Davis G.B, Davis F.D."User acceptance of information technology: Toward a unified view," MIS Quarterly, 2003; 27, 425-478.
25. Liaw S. Investigating students’ perceived satisfaction, behavioral intention, and effectiveness of e-learning: A case study of the Blackboard system, Computers & Education.2008; 51, 864–873.
26. Zhou T, Lu Y, Wang B. Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior,2010; 26(4), 760-767.
27. Razvizadeh Sh. Identification of the key factors of success (CSF) of university electronic learning centers in Iran and evaluation of these factors in Shahid Beheshti University. Faculty of Psychology and Educational Sciences of Shahid Beheshti.1394
28. Khorasani A, Abdolmaleki J, Zahedi H. Factors Affecting Admission to E-learning in Tehran University Students Based on Technology Acceptance Model. Iranian Journal of Medical Education,1390; 11 (6).
29. Bhattacherjee A. "Understanding information systems continuance: an expectation confirmation model," MIS Q..2001; 25, 351-370.
30. Ifinedo P. Roles of perceived fit and perceived individual learning support in students' weblogs continuance usage intention. International Journal of Educational Technology in Higher Education,2018; 15 (7), 1-18.
31. Cheng M, Yuen A.H.K.. Student continuance of learning management system use: A longitudinal exploration, Computers & Education10.1016/j.compedu.2018.02.004.
32. De Melo Pereira F.A, Ramos A. S. M, Gouvêa M. A, da Costa M. F. Satisfaction and continuous use intention of e-learning service in Brazilian public organizations. Computers in Human Behavior, 46, 139–148. 10.1016/j.chb.2015.01.016.