ساختار جدید کلیدزنی نرم در مبدل DC/DC با ضریب بهره ولتاژ بالا و راندمان مناسب در توان انتقالی بالا
محورهای موضوعی : مهندسی برق و کامپیوترامید شریفیانا 1 , مجید دهقانی 2 , غضنفر شاهقلیان 3 , سید محمد مهدی میرطلایی 4 , مسعود جباری 5
1 - دانشگاه آزاد اسلامی واحد نجف آباد
2 - دانشگاه آزاد اسلامی واحد نجف آباد
3 - دانشگاه آزاد اسلامی واحد نجف آباد
4 - دانشگاه آزاد اسلامی واحد نجف آباد
5 - دانشگاه آزاد اسلامی واحد نجف آباد
کلید واژه: منابع انرژی نو, مبدل افزاینده, تشدید سری, ضریب بهره ولتاژ, کلیدزنی نرم,
چکیده مقاله :
از محدودیتهای اصلی استفاده از انرژیهای تجدیدپذیر برای تولید برق میتوان به کمبودن ولتاژ خروجی نیروگاههای تولید برق با انرژیهای نو اشاره کرد. بنابراین جهت بهرهگیری کارآمدتر از انرژیهای تجدیدپذیر طراحی یک مبدل با ضریب بهره بالاتر و راندمان بیشتر از اهمیت ویژهای برخوردار است. در این مقاله یک ساختار جدید ارائه شده که همزمان با داشتن یک مبدل افزاینده، تلفات ناشی از کلیدزنی نرم نسبت به روشهای مرسوم به حداقل رسانده میشود. همچنین بر اساس روش ارائهشده تنش ولتاژ روی دیودها و کلیدها در حد قابل قبول محدود میشود. یک مبدل افزاینده ساده میتواند به کمک اضافهکردن یک شاخه موازی با ایجاد تشدید سری تا حد قابل ملاحظهای ولتاژ خروجی را افزایش دهد و همزمان کلیدزنی در ولتاژ صفر را ممکن سازد. مبدل پیشنهادی بدون اضافهکردن قطعه فعال به مبدل و با ساختار ساده غیر ایزوله در توان 500 وات و ولتاژ 385 ولت دارای ضریب بهره ولتاژ حدود 8/10 و راندمان بیشتر از 93% است. نتایج شبیهسازی عملکرد مبدل پیشنهادی را برای حالتهای عملکردی مختلف نشان میدهد.
One of the main limitations of using renewable energies for electricity generation is the low output voltage of power plants with renewable energies. Therefore, the design of a converter with higher gain voltage and higher efficiency is important in the use of renewable energies. In this paper, a new topology that simultaneously has the structure of a boost converter can minimize switching losses by conventional soft switching methods and is also able to reduce voltage stress on diodes and switches Keep to an acceptable level. A simple boost converter can Increase the output voltage significantly by adding a parallel branch by generating a series resonance and enables zero voltage switching at the same time. Suggested converter without adding active element to converter with simple non-isolated structure at 500 watts and 385 volts it has a voltage gain factor of about 10.8 and efficiency of over 93%. The results show the performance simulation of the proposed converter for different performance modes.
[1] G. Haghshenas, S. M. M. Mirtalaei, H. Mordmand, and G. Shahgholian, "High step-up boost-fly back converter with soft switching for photovoltaic applications," J. of Circuits, Systems, and Computers, vol. 28, no. 1, pp. 1-16, Jan. 2019.
[2] ا. بابائی، ا. عباسنژاد، س. علیلو و م. صباحی، "تحلیل، طراحی و شبیهسازی یک مبدل dc/dc کاهنده با کلیدزنی تحت ولتاژ و جریان صفر،" نشریه کیفیت و بهرهوری صنعت برق ایران، سال 4، شماره 2، صص. 62- 49، پاييز و زمستان 1394.
[3] S. H. Mozafarpoor-Khoshrodi and G. Shahgholian, " Improvement of perturb and observe method for maximum power point tracking in wind energy conversion system using fuzzy controller," Energy Equipment and Systems, vol. 4, no. 2, pp. 111-122, Autumn 2016.
[4] K. Khani and G. Shahgholian, "Analysis and optimization of frequency control in isolated microgrid with double-fed induction-generators based wind turbine," J. of International Council on Electrical Engineering, vol. 9, no. 1, pp. 24-37, Feb. 2019.
[5] م. ر. بنائي و ح. اژدرفائقي بناب، "آنالیز عملکرد مبدل dc-dc کاهنده- افزاینده جدید با ضریب افزایندگی بالا برای کاربرد در سیستم خورشیدی،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، الف- نشریه مهندسی برق، سال 15، شماره 3، صص. 184- 175، پاییز 1396.
[6] ر. علیاکبری و م. دلشاد، "یک مبدل بسیار افزاینده کلیدزنی در جریان صفر جدید با المان کمکی کم،" روشهای هوشمند در صنعت برق، سال 8، شماره 32، صص. 28- 21، زمستان 1396.
[7] س. م. م. میرطلائی و ر. امانی نافچی، "مبدل DC-DC بسیار افزاینده بوست با سلف تزویجشده و تکنیک دیود- خازن،" نشریه روشهای هوشمند در صنعت برق، سال 10، شماره 39، صص. 12- 3، پاییز 1398.
[8] B. P. R. Baddipadiga, V. A. K. Prabhala, and M. Ferdowsi, "A family of high-voltage-gain DC-DC converters based on a generalized structure," IEEE Trans. on Power Electronics, vol. 33, no. 10, pp. 8399-8411, Oct. 2018.
[9] N. Vazquez, L. Estrada, C. Hernandez, and E. Rodriguez, "The tapped-inductor boost converter," in Proc. of the Int. Symp. on Industrial Electronics, . pp. 538-543, Vigo, Spain, 4-7 Jun. 2007.
[10] J. Yao, K. Li, K. Zheng, and A. Abramovitz, "On the equivalence of the switched inductor and the tapped inductor converters and its application to small signal modelling," Energies, vol. 12, Article No.: 4906, 19 pp., 2019.
[11] Q. Zhao and F. C. Lee, "High performance coupled-inductor dc-dc converter," in Proc. of 18th Annual IEEE Applied Power Electronics Conf. and Exposition, pp. 109-113, Miami Beach, FL, USA, 9-13 Feb. 2003.
[12] T. V. Nguyen, et al., "Self-powered high efficiency coupled inductor boost converter for photovoltaic energy conversion," Energy Procedia, vol. 36, pp. 650-656, 2013.
[13] Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters," IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 65-73, Jan. 2003.
[14] T. Wu, Y. Lai, J. Hung, and Y. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan. 2008.
[15] D. M. Van de Sype, K. De Gusseme, W. R. Ryckaert, A. P. Van de Bossche, and J. A. Melkebeek, "A single switch buck-boost converter with a high conversion ratio," in Proc. European Conference on Power Electronics and Applications, pp. 1-10, Dresden, Germany, Sept. 2005.
[16] W. Li and X. He, "Review of non-isolated high-step-up dc/dc converters in photovoltaic grid-connected applications," IEEE Trans. on Industrial Electronics, vol. 58, no. 4, pp. 1239-1250, Apr. 2011.
[17] H. Liu, H. Hu, H. Wu, Y. Xing, and I. Batarseh, "Overview of high-step-up coupled-inductor boost converters," IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 689-704, Jun. 2016.
[18] Y. Zhao, W. Li, and X. He, "Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell," IEEE Trans. on Power Electronics, vol. 27, no. 6, pp. 2869-2878, Jun. 2012.
[19] B. Gu, J. Dominic, J. S. Lai, Z. Zhao, and C. Liu, "High boost ratio hybrid transformer DC-DC converter for photovoltaic module applications," in Proc. . of 18th Annual IEEE Applied Power Electronics Conf. and Exposition, pp. 598-606, Orlando, FL, USA, 5-9 Feb. 2012.
[20] T. Liang, S. Chen, L. Yang, J. Chen, and A. Ioinovici, "Ultra-large gain step-up switched-capacitor dc-dc converter with coupled inductor for alternative sources of energy," IEEE Trans. on Circuits and Systems, vol. 59, no. 4, pp. 864-874, Apr. 2012.
[21] R. Wai, C. Lin, R. Duan, and Y. Chang, "High-efficiency DC-DC converter with high voltage gain and reduced switch stress," IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 354-364, Feb. 2007.
[22] K. Tseng, J. Lin, and C. Huang, "High step-up converter with three-winding coupled inductor for fuel cell energy source applications," IEEE Trans. on Power Electronics, vol. 30, no. 2, pp. 574-581, Feb. 2015.
[23] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, "High boost converter using voltage multiplier," in Proc. 31st Annual Conf. of IEEE Industrial Electronics Society, 6 pp., Raleigh, NC, USA, 6-10 Nov. 2005.
[24] T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen, and A. Ioinovici, "Ultra large gain step-up switched-capacitor DC-DC converter with coupled inductor for alternative sources of energy," IEEE Trans. on Circuit and System, vol. 59, no. 4, pp. 864-874, Apr. 2012.
[25] D. R. Garth, W. J. Muldoon, G. C. Benson, and E. N. Costague, "Multi-phase, 2-kilowatt, high-voltage, regulated power supply," in Proc. of EEE Power Electronics Specialists Conf., pp. 110-116, Pasadena, CA, USA, 19-20 Apr. 1971.
[26] M. T. Zhang, Y. Jiang, F. C. Lee, and M. M. Jovanovic, "Single-phase three-level boost power factor correction converter," in Proc. IEEE Applied Power Electronics Conference and Exposition , vol. 1, pp. 434-439, Dallas, TX, USA, 5-9 Mar. 2002.
[27] K. I. Hwu and Y. T. Yau, "An interleaved ac-dc converter based on current tracking," IEEE Trans. on Industrial Electronics, vol. 56, no. 5, pp. 1456-1463, May 2009.
[28] G. Franceschini, E. Lorenzani, M. Cavatorta, and A. Bellini, "3boost: a high-power three-phase step-up full-bridge converter for automotive applications," IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 173-183, Jan. 2008.
[29] P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, "Steady-state analysis of an interleaved boost converter with coupled inductors," IEEE Trans. on Industrial Electronics, vol. 47, no. 4, pp. 787-795, Aug. 2000.
[30] X. Huang, X. Wang, T. Nergaard, J. S. Lai, X. Zhu, and L. Xu, "Parasitic ringing and design issues of digitally controlled high-power interleaved boost converters," IEEE Trans. on Power Electronics, vol. 19, no. 5, pp. 1341-1352, Sep. 2004.
[31] L. Huber and M. M. Jovanovic, "A design approach for server power supplies for networking applications," in Proc. of 15th Annual IEEE Applied Power Electronics Conf. and Expo., vol. 2, pp. 1163-1169, New Orleans, LA, USA, 6-10 Feb. 2000.
[32] X. Feng, J. Liu, and F. C. Lee, "Impedance specifications for stable dc distributed power systems," IEEE Trans. on Power Electronics, vol. 17, no. 2, pp. 157-162, Mar. 2002.
[33] T. F. Wu and T. H. Yu, "Unified approach to developing single-stage power converters," IEEE Trans. on Aerospace and Electronic Systems, vol. 34, no. 1, pp. 211-223, Jan. 1998.
[34] B. R. Lin and J. J. Chen, "Analysis and implementation of a soft switching converter with high-voltage conversion ratio," IET-Power Electron, vol. 1, no. 3, pp. 386-394, Oct. 2008.
[35] R. Suriyakulnaayudhya, "A high gain step-up fly boost converter for high voltage high power applications," in Proc. of the IEEE/EEEIC, vol. ???, pp. 1268-1272, Rome, Italy, Jun. 2015.
[36] S. L. Brockveld and G. Waltrich, "Boost-flyback converter with interleaved input current and output voltage series connection," IET Power Electronics, vol. 11, no. 8, pp. 1463-1471, May 2018.
[37] A. B. Shitole, S. Sathyan, H. Suryawanshi, M. G. G. Talapur, and P. Chaturvedi, "Soft-switched high voltage gain boost-integrated flyback converter interfaced single-phase grid-tied inverter for SPV integration," IEEE Trans. on Industry Applications, vol. 54, no. 1, pp. 482-493, Jan./Feb. 2018.
[38] A. E. L. Costa and R. L. Andersen, "High-gain boost-boost-flyback converter for renewable energy sources applications," in Proc. of the IEEE 13th Brazilian Power Electronics Conf. and 1st Southern Power Electronics Conf., 6 pp., Fortaleza, Brazil, 29 Nov.-2 Dec. 2015.
[39] س. م. م. میرطلائی و ر. جابری، "بررسی مبدل بوست- فلایبک بهره بالا در کاربرد سیستمهای خورشیدی،" روشهای هوشمند در صنعت برق، سال 9، شماره 34، صص. 28- 19، تابستان 1397.
[40] V. T. Liu and L. J. Zhang, "Design of high efficiency boost-forward-flyback converters with high voltage gain," in Proc. of the IEEE Int. Conf. on Control & Automation, pp. 1061-1066, Taichung, Taiwan, 18-20 Jun. 2014.
[41] A. M. S. S. Andrade, E. Mattos, and M. L. S. Martins, "High-efficiency boost-flyback converter with voltage multiplier cells for high voltage gain application," Electric Power Components and Systems, vol. 46, no. 1, pp. 104-111, 2018.
[42] A. Affam, Y. Buswig, A. H. Othman, N. B. Julai, and O. Qays, "A review of multiple input dc-dc converter topologies linked with hybrid electric vehicles and renewable energy systems," Renewable and Sustainable Energy Reviews, vol. 135, Article No.: 110186, 23 pp., Jan. 2021.
[43] M. Jabbari and M. S. Dorcheh, "Resonant multi-input/multi-output/bidirectional ZCS step-down dc-dc converter with systematic synthesis for point-to-point power routing," IEEE Trans. on Power Electronics, vol. 33, no. 7, pp. 6024-6032, Jul. 2018.
[44] M. Veerachary and P. Kumar, "Analysis and design of quasi-z-source equivalent dc-dc boost converters," IEEE Trans. on Industry Applications, vol. 56, no. 6, pp. 6642-6656, Nov./Dec. 2020.
[45] S. Hasanpour, Y. Siwakoti, and F. Blaabjerg, "Hybrid cascaded high step-up dc/dc converter with continuous input current for renewable energy applications," IET Power Electronics, vol. 13, no. 15, pp. 3487-3495, Nov. 2020.
[46] A. Alzahrani, P. Shamsi, and M. Ferdowsi, "A novel non-isolated high-gain dc-dc boost converter," in Proc. of North American Power Symp., 6 pp., Morgantown, WV, USA, 17-19 Sept. 2017.
[47] M. Premkumar, et al., "A novel non-isolated high step-up DC-DC boost converter using single switch for renewable energy systems," Electrical Engineering, vol. 102, no. ???, pp. 811-829, Jun. 2020.
[48] N. H. Pour and K. Varesi, "A new non-isolated high gain DC-DC converter suitable for renewable energies," in Proc. of the 10th Int. Power Electronics, Drive Systems and Technologies Conf., pp. 747-751, Shiraz, Iran, 12-14 Feb. 2019.
[49] M. Hanifehpour, et al., "No-isolated high gain dc/dc converter with low input current ripple suitable for renewable applications," Electric Power Components and Systems, vol. 48, no. 11, pp. 1171-1184, 2020.
[50] M. Eydi, S. H. Hosseini, and R. Ghazi, "A new high gain DC-DC boost converter with continuous input and output currents," in Proc. of the the 10th Int. Power Electronics, Drive Systems and Technologies Conf.,, pp. 224-229, Shiraz, Iran, 12-14 Feb. 2019.
[51] J. Loranca-Coutino, et al., "High gain boost converter with reduced voltage in capacitors for fuel-cells energy generation systems," Electronics, vol. 9, no. 11, Article Number: 1480, 20 pp., Nov. 2020.
[52] F. L. Tofoli, D. C. Pereira, W. J. Paula, and D. S. O. Junior, "Survey on non-isolated high-voltage step-up dc-dc topologies based on the boost converter," IET Power Electronics, vol. 8, no. 10, pp. 2044-2057, Oct. 2015.
[53] W. Yu, et al., "High efficiency converter with charge pump and coupled inductor for wide input photovoltaic ac module applications," in Proc. IEEE Energy Conversion Congress and Expo., pp. 3895-3900, San Jose, CA, USA, 20-24 Sept. 2009.
[54] R. J. Wai and R. Y. Duan, "High step-up converter with coupled-inductor," IEEE Trans. on Power Electronics, vol. 20, no. 5, pp. 1025-1035, Sept. 2005.