تخصیص بهینه باتری ذخیرهساز انرژی در شبکه توزیع انرژی الکتریکی با هدف سودآوری حداکثری
محورهای موضوعی : مهندسی برق و کامپیوترمحمد رسول جان نثار 1 , محسن کلانتر 2 , علیرضا صدیقی انارکی 3
1 - دانشگاه یزد
2 - دانشگاه علم و صنعت ایران
3 - مهندسی برق
کلید واژه: الگوریتمهای ابتکاریباتری ذخیرهساز انرژیتجارت انرژیسودآوری حداکثریکاهش اوج بار,
چکیده مقاله :
در این مقاله، تخصیص بهینه باتری ذخیرهساز انرژی در شبکه توزیع با هدف کاهش اوج بار و سودآوری حداکثری انجام شده است. برای این منظور، شاخصهایی با استفاده از اطلاعات بار ساعتی، هزینه ارتقای فیدر و قیمت فروش برق به تعرفههای مختلف، معرفی شده است. در ادامه با استفاده از روش تحلیل سلسلهمراتبی، شاخصها وزندهی شده و فیدر مناسب برای نصب ذخیرهساز مشخص شده است. سپس به منظور دستیابی به میزان حداکثر ممکن کاهش اوج بار و تأمین سود حداکثری، یک تابع هدف اقتصادی با هدف یافتن اندازه و نحوه شارژ و دشارژ بهینه ذخیرهساز تعریف شده است. تابع هدف شامل هزینههای نصب و بهرهبرداری ذخیرهساز، سود خرید و فروش انرژی، سود به تعویق افتادن توسعه شبکه، سود ناشی از مسایل زیستمحیطی و سود ناشی از کاهش هزینههای دسترسی به شبکه بالادست است. با توجه به کاهش اوج بار، محدوده توان و ظرفیت باتری و همچنین تعادل در میزان شارژ و دشارژ باتری، قیود مناسبی در نظر گرفته شده است. با توجه به غیر خطی بودن تابع هدف، در ابتدا مؤلفههایی که در غیر خطی شدن تابع هدف نقش داشتهاند با توجه به الگوریتمهای ابتکاری (ژنتیک، دسته ذرات، مورچگان و جستجوی ممنوع) تعیین شده و سپس تابع هدف توسط روش خطی نقطه داخلی حل شده است. نتایج ضمن تأمین اهداف مد نظر، مناسبترین باتری و روش بهینهسازی را از بین باتریها و روشهای معرفیشده ارائه میدهد.
In this paper, the optimal allocation of battery energy storage in the distribution network is performed for peak shaving and maximizing profitability. To this end, indicator shave been introduced using hourly load information, feeder upgrade cost and electricity sales price to various tariffs. Then, using the Analytic Hierarchy Process (AHP), the indicators are weighted and a suitable feeder is indicated for installing energy storage. Then, to achieve the maximum possible peak shaving and maximize profit, an economic objective function is defined to determine the optimal sizing and charge-discharge of the energy storage. The objective function includes the investment and operating cost of battery energy storage and the profits of energy arbitrage, deferring facility investment, environmental issues, and reducing the upstream access cost. Appropriate constraints are considered according to the peak shaving, range of battery power and energy capacity as well as balance in the amount of charge and discharge. Due to the nonlinearity of the objective function, the components involved in the nonlinearity of the objective function are determined according to the heuristic algorithms (Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Tabu Search (TS)) and then the objective function is solved by the Interior-point linear programming. The results provide the most suitable battery type and optimization method among the introduced batteries and methods while fulfilling the objectives.
[1] F. A. Chacra, P. Bastard, G. Fleury, and R. Clavreul, "Impact of energy storage costs on economical performance in a distribution substation," IEEE Trans. Power Systems, vol. 20, no. 2, pp. 684-691, May 2005.
[2] A. Nourai, Installation of the first distributed energy storage system at AEP, Sandia National Laboratories, 2007.
[3] L. A. Wong, et al., "Review on the optimal placement, sizing and control of an energy storage system in the distribution network," J. Energy Storage, vol. 21, pp. 489-504, Feb. 2019.
[4] N. Jayasekara, M. A. S. Masoum, and P. J. Wolfs, "Optimal operation of distributed energy storage systems to improve distribution network load and generation hosting capability," IEEE Trans. Sustainable Energy, vol. 7, no. 1, pp. 250-261, Jan. 2016.
[5] P. Lazzeroni and M. Repetto, "Optimal planning of battery systems for power losses reduction in distribution grids," Electric Power Systems Research, vol. 167, pp. 94-112, Feb. 2019.
[6] ن. بياباني، م. رمضاني و ح. فلقي، "افزایش نفوذ منابع تولید پراکنده توسط جایابی همزمان منابع تولید پراکنده و سیستمهای ذخیرهساز انرژی در شبکههای توزیع،" نشریه مهندسی برق و کامپیوتر ایران، سال 11، شماره 2، صص. 65-57، تابستان 1392.
[7] M. Chen, et al., "Optimal allocation method on distributed energy storage system in active distribution network," Energy Procedia, vol. 141, no. 4, pp. 525-531, Dec. 2017.
[8] V. F. Pires, A. V. Pombo, and J. M. Lourenço, "Multi-objective optimization with post-pareto optimality analysis for the integration of storage systems with reactive-power compensation in distribution networks," J. of Energy Storage, vol. 24, pp. 1-14, Aug. 2019.
[9] M. R. Jannesar, A. Sedighi, M. Savaghebi, and J. M. Guerrero, "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, vol. 226, pp. 957-966, Sep. 2018.
[10] M. Nick, R. Cherkaoui, and M. Paolone, "Optimal planning of distributed energy storage systems in active distribution networks embedding grid reconfiguration," IEEE Trans. Power Systems, vol. 33, no. 2, pp. 1577-1590, Mar. 2018.
[11] A. F. Crossland, D. Jones, and N. S. Wade, "Planning the location and rating of distributed energy storage in LV networks using a genetic algorithm with simulated annealing," International J. of Electrical Power & Energy Systems, vol. 59, pp. 103-110, Jul. 2014.
[12] H. Mehrjerd, "Simultaneous load leveling and voltage profile improvement in distribution networks by optimal battery storage planning," Energy, vol. 181, pp. 916-926, Aug. 2019.
[13] A. Giannitrapani, S. Paoletti, A. Vicino, and D. Zarrilli, "Optimal allocation of energy storage systems for voltage control in LV distribution networks," IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2859-2870, Nov. 2017.
[14] A. S. A. Awad, T. H. M. EL-Fouly, and M. M. A. Salama, "Optimal ESS allocation for load management application," IEEE Trans. Power Systems, vol. 30, no. 1, pp. 327-336, Jan. 2015.
[15] D. Q. Hung and N. Mithulananthan, "Community energy storage and capacitor allocation in distribution systems," in AUPEC, Brisbane, 2011.
[16] E. Grover-Silva, R. Girard, and G. Kariniotakis, "Optimal sizing and placement of distribution grid connected battery systems through an SOCP optimal power flow algorithm," Applied Energy, vol. 219, pp. 385-393, Jun. 2018.
[17] C. K. Das, et al., "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, vol. 252, pp. 1-19, Oct. 2019.
[18] M. Nick, R. Cherkaoui, and M. Paolone, "Optimal siting and sizing of distributed energy storage systems via alternating direction method of multipliers," International J. of Electrical Power & Energy Systems, vol. 72, pp. 33-39, Nov. 2015.
[19] M. Daghi, M. Sedghi, A. Ahmadian, and M. Aliakbar-Golkar, "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied Energy, vol. 183, pp. 456-469, Dec. 2016.
[20] D. Parra, M. Gillott, S. A. Norman, and G. S. Walker, "Optimum community energy storage system for PV energy time-shift," Applied Energy, vol. 137, pp. 576-587, Jan. 2015.
[21] H. Mehrjerdi and R. Hemmati, "Modeling and optimal scheduling of battery energy storage systems in electric power distribution networks," J. of Cleaner Production, vol. 234, pp. 810-821, Oct. 2019.
[22] W. Bingying, Z. Buhan, M. Biao, and Z. Jiajun, "Optimal capacity of flow battery and economic dispatch used in peak load shifting," in Proc. 4th Inter. Conf. DRPT, pp. 1395-1400, Shandong, China, 6-9 Jul. 2011.
[23] M. Zolfaghari, N. Ghaffarzadeh, and A. J. Ardakani, "Optimal sizing of battery energy storage systems in off-grid micro grids using convex optimization," J. of Energy Storage, vol. 23, pp. 44-56, Jun. 2019.
[24] G. Carpinelli, et al., "Optimal integration of distributed energy storage devices in smart grids," IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 985-995, Jun. 2013.
[25] C. K. Das, O. Bass, G. Kothapalli, T. S. Mahmoud, and D. Habibi, "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, vol. 232, pp. 212-228, Dec. 2018.
[26] J. Sardi, N. Mithulananthan, M. Gallagher, and D. Q. Hung, "Multiple community energy storage planning in distribution networks using a cost-benefit analysis," Applied Energy, vol. 190, pp. 453-463, Mar. 2017.
[27] R. C. Leou, "An economic analysis model for the energy storage system applied to a distribution substation," International J. of Electrical Power & Energy Systems, vol. 34, no. 1, pp. 132-137, Jan. 2012.
[28] R. C. Johnson, M. Mayfield, and S. B. M. Beck, "Optimal placement, sizing, and dispatch of multiple BES systems on UK low voltage residential networks," J. of Energy Storage, vol. 17, pp. 272-286, Jun. 2018.
[29] H. Saboori, R. Hemmati, and V. Abbasi, "Multistage distribution network expansion planning considering the emerging energy storage systems," Energy Conversion and Management, vol. 105, pp. 938-945, Nov. 2015.
[30] ع. مهديزاده و ن. تقيزادگان كلانتري، "برنامهریزی بهینه اقتصادی یک ریزشبکه در حالت جزیرهای با در نظر گرفتن منابع تجدیدپذیر بادی و خورشیدی، باتری و سیستم ذخیرهساز هیدروژنی در حضور برنامه پاسخگویی بار،" نشریه مهندسی برق و کامپیوتر ایران، سال 15، شماره 1-الف، صص. 11-1، تابستان 1396.
[31] X. Shen, M. Shahidehpour, Y. Han, S. Zhu, and J. Zheng, "Expansion planning of active distribution networks with centralized and distributed energy storage systems," IEEE Trans. Sustainable Energy, vol. 8, no. 1, pp. 126-134, Jan. 2017.
[32] H. I. Elsayed, S. R. Chaudhry, and A. A. A. Al-Mahmoud, "PV, battery storage and energy conversion system for meeting peak load in a substation," in Proc. CIRED 2012 Workshop, Lisbon, 2012.
[33] م. خلیلی، تکنیک تصمیمگیری چند معیار تحلیلی سلسلهمراتبی، مؤسسه تحقیق در عملیات معین گستر گیتی، 1388.
[34] -, EPRI-DOE Handbook Supplement of Energy Storage for Grid Connected Wind Generation Applications, Technical Update, Dec. 2004.
[35] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, "Energy storage systems for transport and grid applications," IEEE Trans. Industrial Electronics, vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[36] A. Oudalov, D. Chartouni, C. Ohler, and G. Linhofer, "Value analysis of battery energy storage applications in power systems," in IEEE PES Power Systems Conf. and Expos., pp. 2206-2211, Atlanta, USA, 29 Oct.-1 Nov. 2006.
[37] S. X. Chen, H. B. Gooi, and M. Q. Wang, "Sizing of energy storage for microgrids," IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 142-151, Mar. 2012.
[38] د. اتابكی و خ. کلیک، "الگوریتم ژنتیک قسمت دوم،" ماهنامه پردازشگر، شماره 80، صص. 29-26، دی 1389.
[39] I. Chung, W. Liu, D. A. Cartes, and K. Schoder, "Control parameter optimization for a microgrid system using particle swarm optimization," in Proc. IEEE Inter. Conf. Sustainable Energy Technology, pp. 837-842, Singapore, 24-27 Nov. 2008.
[40] ح. شریفزاده و ن. امجدي، "توزيع بهينه توان راكتيو با استفاده از الگوريتم بهینهسازی دسته ذرات،" مجله مدلسازی در مهندسي، دوره 4، شماره 18، صص. 69-63، پاییز 1388.
[41] ر. قاضی و ا. عربپور، "برنامهریزی توان راکتیو چندهدفه در شبکههای قدرت با استفاده از روش کلونی مورچه شتابیافته و وزندهی سلسلهمراتبی،" نشریه دانشکده فنی، دوره 40، شماره 3، صص. 398-387، پاییز 1385.
[42] م. ا. همداني گلشن، س. ع. عارفیفر و ق. مصلحي، "به کارگیری الگوریتم جستجوي ممنوع در تخصيص بهينه توليدات پراكنده و منابع توان راكتيو،" نوزدهمین کنفرانس بینالمللی برق، صص. 12-1، تهران، ایران، آذر 1383.
[43] A. Zangeneh, S. Jadid, and A. Rahimi-Kian, "Promotion strategy of clean technologies in distributed generation expansion planning," Renewable Energy, vol. 34, no. 12, pp. 2765-2773, Dec. 2009.
[44] A. Talaei, K. Begg, and T. Jamasb, The Large Scale Roll-Out of Electric Vehicles: the Effect on the Electricity Sector and CO2 Emissions, EPRG Working Paper 1222, 2012.