کاهش تلفات هسته مغناطیسی در مبدل فوروارد برای راه اندازی لامپ مگنترون
محورهای موضوعی : مهندسی برق و کامپیوترمحمدرضا بنائي 1 , ابوالفضل نصیری 2 , سید محمد علوی 3 , شهرام حسین زاده 4
1 - دانشگاه شهید مدنی آذربایجان
2 - فنی و مهندسی
3 - دانشگاه جامع امام حسین
4 - دانشگاه شهیدمدنیآذربایجان
کلید واژه: تشدید سری تغییر فازکلمپ فعاللامپ مگنترونمبدل فورواردهسته مغناطیسی,
چکیده مقاله :
در اين تحقیق، یک مبدل فوروارد با کلمپ فعال تغییر فاز یافته برای راهاندازی لامپ مگنترون ارائه شده است . مبدل ارائهشده از نوع افزاینده و با بهره بالا میباشد. برای کاهش تنش ولتاژ کلید اصلی از ساختار کلمپ فعال استفاده شده است. به علاوه با استفاده از روش تغییر فاز کلید کلمپ، ضمن حفظ چگالی شار بیشینه هسته ترانسفورماتور قدرت، امکان افزایش زمان روشنبودن کلید اصلی فراهم میگردد. بدین ترتیب با یک هسته یکسان امکان افزایش انتقال توان به وجود میآید. لذا در یک توان یکسان حجم، وزن و قیمت هسته مورد استفاده کاهش مییابد. همچنین یک مدار تشدید سری شرایط کلیدزنی نرم را فراهم میکند. توان بیشینه و متوسط منبع تغذیه برای کمینه تلفات کنترل میگردد. منبع تغذیه، توانی در حدود kW 1 با متوسط توان در حدود W 250 را با تنظیم زمان فعالبودن مبدل تحویل میدهد. از مزایای دیگر مدار ارائهشده میتوان به سادگی مدار قدرت، کاهش تعداد المانهای کلیدزنی و کاهش تلفات کلیدزنی اشاره کرد. نتایج طراحی توسط نرمافزار PSCAD شبیهسازی و تأیید شده است.
In this study, a forward converter with phased shifted active clamp is presented for the driving of magnetron lamp (4 kV, 300 mA, 1000 ±40 W).The presented converter is of a boost and high-gain type. To reduce the voltage stress, the active clamp structure is used. In addition, using the clamp switch phase shifted method, while the maximum flux density of the transformer core retains power, it is possible to increase the time the main key is turned on. Thus, with the same nucleus, the possibility of increasing power transmission is created. Therefore, in the same power, the volume, weight and price of the core used should be reduced.Also, a series resonance circuit provides soft switching conditions. Maximum and average power supply power is controlled for minimum losses. The power supply delivers about 1 kW with an average power of about 250 W by adjusting the time the converter is enabled. Other advantages of the proposed circuit include simply power circuit, reduction of the number of switching elements and reduction of switching losses. The design results have been simulated and verified by PSCAD software.
[1] Y. Jin Woo, M. C. Lee, K. C. Lee, and G. H. Cho, "One-chip class-E inverter controller for driving a magnetron," IEEE Trans. on Ind Electron, vol. 56, no. 2, pp. 400-407, Feb. 2009.
[2] Y. R. Yang, "Design of a voltage-fed quasi-E resonant inverter for cooker magnetrons," in Proc. IEEE Int. Conf. on Power Electronics, Drives and Energy Systems, 5 pp., Bengaluru, India, 16-19 Dec. 2012.
[3] J. Sung-Roc, R. Hong-Je, A. Suk-Ho, K. Jongsoo, and R. Geun Hie, "Development and optimization of high-voltage power supply system for industrial magnetron," IEEE Trans. Ind. Electron, vol. 59, no. 3, pp. 1453-1461, Mar. 2012.
[4] S. R. Jang, H. J. Ryoo, J. S. Kim, and S. H. Ahn, "Design and analysis of series resonant converter for 30 kW industrial magnetron," in Proc. 36th Annu. Conf. IEEE Ind. Electron. Soc., IECON’10, pp. 415-420, Glendale, AZ, USA, 7-10 Nov. 2010.
[5] J. A. Martin-Ramos, A. M. Pernia, J. Diaz, F. Nuno, and J. A. Martinez, "Power supply for a high-voltage application," IEEE Trans. on Power Electron, vol. 23, no. 4, pp. 1608-1619, Jul. 2008.
[6] M. Jae Kim, W. Shik Choi, I. Woo Jeong, H. Chul Park, and K. Hyeon Park, "A new driving method of the magnetron power supply for a sulfur plasma lamp," IEEE Trans. on Ind Applications, vol. 63, no. 9, pp. 5416-5424, Sept. 2016.
[7] M. R. Banaei, A. Nasiri, S. M. Alavi, and S. Hosseinzadeh, "Voltage control of magnetron power supply utilizing active clamp flyback converter," Scientific J. of Applied Electromagnetics, vol. 7, no. 1, pp. 73-82, Spring/Summer 2019.
[8] S. W. Choi, I. O. Lee, and J. Y. Lee, "Design of 5-kV/5-kW magnetron power supply using PWM SRC with PISO-connected transformer," IEEE Trans. on Plasma Science, vol. 46, no. 8, pp. 2840-2847, ???. 2018.
[9] A. Nasin, M. R. Banaei, and S. Rahirni, "Phase-shifted half-bridge resonant inverter for driving magnetron," in Proc. IEEE Int. 10th Power Electronics, Drive Systems and Technologies. Conf., pp. 735-740, Shiraz, Iran, 12-14 Feb. 2019.
[10] A. Nasiri and A. S. S. Abadi, "A new driving method for a magnetron using a soft switching active clamp fly-back converter," in Proc. IEEE Int. 10th Power Electronics, Drive Systems and Technologies Conf., pp. 361-366, Shiraz, Iran, 12-14 Feb. 2019.
[11] م. ر. بنائی، س. قابلی ثانی و خ. منفردی، "اراﺋﻪ ﺳﺎﺧﺘﺎر ﺟﺪﻳﺪ ﮔﺮﻣﺎﻳﺶ اﻟﻘﺎﻳﻲ با ﻛﻠﻴﺪزﻧﻲ نرم با ﺑﺎزدﻫﻲ ﺑﺎلا،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، الف- مهندسی برق، سال 17، شماره 3، صص. 164-153، پاییز 1398.
[12] N. Z. Saadabad, S. H. Hosseini, A. Nasiri, and M. Sabahi, "A new soft switched high gain three-port DC-DC converter with coupled inductors," IET Power Electronics, vol. 13, no. 19, pp. 4562-4571, Feb. 2021.
[13] J. Lu and K. K. Afridi, "High-efficiency impedance control network resonant DC-DC converter with optimized startup control," IEEE Trans. on Ind Applications, vol. 53, no. 4, pp. 3880-3889, Jul./Aug. 2017.
[14] Y. Hu, G. Chen, Y. Liu, L. Jiang, P. Li, S. J. Finney, W. Cao, and H. Chen, "Fault-tolerant converter with a modular structure for HVDC power transmitting applications," IEEE Trans. on Ind Applications, vol. 53, no. 3, pp. 420-429, May/Jun. 2017.
[15] A. Nasiri and M. R. Banaei, "A new magnetron driving method using a phase shifted active clamp forward converter for sulfur plasma tube applications," IET Power Electronics, vol. 14, no. 2, pp. 442-453, Feb. 2021.
[16] م. ر. ﺑﻨﺎﺋﻲ و ح. اژدر فائقی بناب، "آنالیز عملکرد مبدل DC-DC کاهنده- افزاینده جدید با ضریب افزایندگی بالا برای کاربرد در سیستم خورشیدی،" نشریه مهندسی برق و مهندسی کامپیوتر ایران، الف- مهندسی برق، سال 15، شماره 3، صص. 184-175، پاییز 1396.
[17] J. M. Kwon and B. H. Kwon, "High step-up active-clamp converter with an input-current doubler and output-voltage doubler for fuel cell power system," IEEE Trans. on Power Electron, vol. 24, no. 1, pp. 108-115, Jan. 2009.
[18] A. Nasiri, M. R. Banaei, and A. S. S. Abadi, "Phase-shifted active clamp flyback converter for driving a magnetron," in Proc. 27th Iranian Conf. on Electrical Engineering, ICEE’19, pp. 2106-2110, Yazd, Iran, 30 Apr.-2 May 2019.
[19] J. A. Claassens and I. W. Hofsajer, "A flux balancer for phase shift ZVS DC-DC converters under transient conditions," in Proc. Appl. Power Electron. Conf. Expo, pp. 523-527, Dallas, TX, USA, 19-23 Mar. 2006.
[20] A. Nasiri, M. R. Banaei, S. M. Alavi, and S. Hosseinzadeh, "A new driving method for a magnetron tube using phase-shifted half-bridge converter," Scientific J. of Radar, vol. 8, no. 2, pp. 1-12, Autumn/ Winter 2020.